
Automating PeopleSoft
Environments in the AWS Cloud

April 2019

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers, or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers

© 2019 Amazon Web Services, Inc. and The Burgundy Group, Inc. All rights reserved.

Contents

Automations Approach .. 1

Benefits of Automating PeopleSoft Environments in the AWS Cloud 2

Amazon Web Services Functionality in Use ... 4

Network... 4

Compute ... 5

Storage ... 6

Database .. 6

Automation Tools in Action ... 7

Docker .. 7

AWS CloudFormation .. 9

Amazon ECS .. 9

Amazon RDS .. 9

Environment Architecture .. 10

Amazon ECS Service Design .. 11

Scalable Production Deployment... 12

Scalable Production Deployment... 14

Development in Automated Environments ... 16

Migrating Data ... 17

Network and Security Design .. 18

Deploying the Solution .. 19

Managing the Solution ... 20

Conclusion ... 21

Contributors ... 21

Document Revisions.. 21

Abstract

This whitepaper describes an approach for automating the creation of Oracle

PeopleSoft (PeopleSoft) environments in the Amazon Web Services (AWS) Cloud. This

approach uses currently available AWS products and services whenever possible, and

uses AWS recommended tools to migrate client data and construct the environment-

creating automations. The approach has a material impact on the flexibility, consistency,

stability, scalability, security, and cost of PeopleSoft environments in the AWS Cloud.

Amazon Web Services Automating PeopleSoft Environments in the AWS Cloud

 Page 1

Automations Approach

Numerous enterprises have successfully migrated their Oracle PeopleSoft (PeopleSoft)

applications to the Amazon Web Services (AWS) Cloud. The majority of these

migrations have been lift-and-shift projects, which are projects in which a static

architecture, similar to the enterprise’s previous on-premises-based deployment, is

recreated in the AWS Cloud. Such enterprises have effectively used the AWS

infrastructure as a service (IaaS) offering to outsource their data centers to the AWS

Cloud.

This approach fails to fully benefit from the on-demand capabilities of AWS services.

The suggested approach outlined in this paper uses currently available AWS products

and services, with AWS-supported automation tools, to build fully automated PeopleSoft

environment-creating solutions (the Automations). After the enterprise’s data has been

migrated to the AWS Cloud, new PeopleSoft environments can be created in about 40

minutes. This includes restoring the database, building out and configuring the web,

app, and batch servers and the accompanying file systems, and properly integrating the

components all within a virtual private cloud in AWS.

The Automations have a material impact on numerous operating attributes of

PeopleSoft environments in the AWS Cloud.

Amazon Web Services Automating PeopleSoft Environments in the AWS Cloud

 Page 2

Benefits of Automating PeopleSoft

Environments in the AWS Cloud

Automating PeopleSoft environments in the AWS Cloud has several very important

benefits, including the following.

1. Flexibility – Because the environments are created in about 40 minutes, non-

production environments can be destroyed each night and rebuilt each morning.

New environments can be created for projects quickly and then terminated when

the project is completed. This flexibility means that enterprises can be constantly

right-sizing their solutions and can quickly react to changing resource needs.

2. Consistency – Environment creation is automated, which makes the

environments extremely consistent throughout the application stack. Each

environment is built from the same set of build scripts. This leads to highly

predictable operations and results.

3. Change Control – Because the environments use infrastructure as code, all

changes to configuration or installation are tracked through source control. This

makes investigation into why an environment has a certain configuration much

easier to track.

4. Stability – The environments are very stable because the environments have

been thoroughly tested and are created in exactly the same way each time.

5. Scalable – Using delivered scaling services, such as AWS Auto Scaling and

Amazon ECS, environments can be quickly scaled up or down, on demand. This

allows the environments to be very reactive to changing resource utilization

requirements. Environments can be scaled up on demand to meet the resource

needs of high traffic events, such as student registration or period-end reporting.

The environments can then be scaled down to normal resource levels as

needed. When you adopt this approach, your environments do not need to be

over provisioned to meet peak usage and peak performance. Instead, they can

be more elastic to respond to real-time demands.

6. Security – AWS assets are available to root administrators only upon creation,

which means access is limited entirely to the security policy that is implemented

during the build out. By extension, this means that security and access are driven

entirely by the security policies reflected in the environment-building automations.

Reviewing and revising an implemented security policy becomes much easier

with such centralized control.

Amazon Web Services Automating PeopleSoft Environments in the AWS Cloud

 Page 3

7. Economics – Because AWS charges hourly for their services, and because

environments can be launched and scaled so quickly, clients can regularly right-

size their environments for ongoing or one-time needs. This also enables clients

to establish policies for terminating non-production environments on nights and

weekends. This flexibility saves money by reducing the AWS services consumed

to only what is required at any given time.

These Automations have a material, positive impact on an enterprise’s ability to

successfully and economically operate PeopleSoft environments in the AWS Cloud.

Amazon Web Services Automating PeopleSoft Environments in the AWS Cloud

 Page 4

Amazon Web Services Functionality in Use

This automated solution uses the AWS services described in the following sections.1

Network

Amazon Route 53

Amazon Route 53 is a highly available and scalable cloud Domain Name System (DNS)

web service. It is designed to give developers and businesses an extremely reliable and

cost-effective method to route end users to internet applications. DNS translates human

readable names (such as www.example.com) into the numeric IP addresses (such as

192.0.2.1) that computers use to connect to each other.

Amazon VPC

Amazon Virtual Private Cloud (Amazon VPC) lets you provision a logically isolated

section of the AWS Cloud where you can launch AWS resources in a virtual network

that you define. You have complete control over your virtual networking environment,

including selection of your own IP address range, creation of subnets, and configuration

of route tables and network gateways. You can use both IPv4 and IPv6 addresses in

your Amazon VPC for secure and easy access to resources and applications. You can

easily customize the network configuration for your Amazon VPC.

For example, you can create a public-facing subnet for your web servers that has

access to the internet, and place your backend systems, such as databases or

application servers, in a private-facing subnet with no internet access. You can leverage

multiple layers of security (including security groups and network access control lists) to

help control access to Amazon EC2 instances in each subnet. Additionally, you can

create a hardware virtual private network (VPN) connection between your corporate

data center and your Amazon VPC, and leverage the AWS Cloud as an extension of

your corporate data center.

Amazon Web Services Automating PeopleSoft Environments in the AWS Cloud

 Page 5

Compute

Amazon EC2

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that provides secure,

resizable compute capacity in the cloud. It is designed to make web-scale computing

easier for developers.

Amazon ECR

Amazon Elastic Container Registry (Amazon ECR) is a fully-managed Docker container

registry that makes it easy for developers to store, manage, and deploy Docker

container images. Amazon ECR is integrated with Amazon Elastic Container Service

(Amazon ECS), which simplifies the development to production workflow.

Amazon ECS

Amazon EC2 Container Service (Amazon ECS) is a highly scalable, high-performance

container management service that supports Docker containers. It enables you to easily

run applications on a managed cluster of Amazon EC2 instances. Amazon ECS

eliminates the need for you to install, operate, and scale your own cluster management

infrastructure. With simple API calls, you can launch and stop Docker-enabled

applications, query the complete state of your cluster, and access many familiar

features such as security groups, Elastic Load Balancing, Amazon Elastic Block Store

(Amazon EBS) volumes, and AWS Identity and Access Management (IAM) roles. You

can use Amazon ECS to schedule the placement of containers across your cluster

based on your resource needs and availability requirements. You can also integrate

your own scheduler or third-party schedulers to meet specific business or application

requirements.

ELB

Elastic Load Balancing (ELB) automatically distributes incoming application traffic

across multiple Amazon EC2 instances. It enables you to achieve greater levels of fault

tolerance in your applications, seamlessly providing the required amount of load

balancing capacity needed to distribute application traffic.

Amazon Web Services Automating PeopleSoft Environments in the AWS Cloud

 Page 6

Storage

Amazon EBS

Amazon Elastic Block Store (Amazon EBS) provides persistent block storage volumes

for use with Amazon EC2 instances in the AWS Cloud. Each Amazon EBS volume is

automatically replicated within its Availability Zone to protect you from component

failure, offering high availability and durability. Amazon EBS volumes offer the

consistent and low-latency performance needed to run your workloads. With Amazon

EBS, you can scale your usage up or down within minutes—all while paying a low price

for only what you provision.

Amazon EFS

Amazon Elastic File System (Amazon EFS) provides simple, scalable file storage for

use with Amazon EC2 instances in the AWS Cloud. Amazon EFS is easy to use and

offers a simple interface that allows you to create and configure file systems quickly and

easily. With Amazon EFS, storage capacity is elastic, growing and shrinking

automatically as you add and remove files, so your applications have the amount of

storage they need, when they need it.

Amazon S3

Amazon Simple Storage Service (Amazon S3) is object storage with a simple web

service interface to store and retrieve any amount of data from anywhere on the web. It

is designed to deliver 99.999999999% durability, and scales past trillions of objects

worldwide.

Database

Amazon RDS

Amazon Relational Database Service (Amazon RDS) makes it easy to set up, operate,

and scale a relational database in the cloud. It provides cost-efficient and resizable

capacity while managing time-consuming database administration tasks, which frees

you up to focus on your applications and business. Amazon RDS provides you six

familiar database engines to choose from, including Amazon Aurora, PostgreSQL,

MySQL, MariaDB, Oracle, and Microsoft SQL Server.

Amazon Web Services Automating PeopleSoft Environments in the AWS Cloud

 Page 7

Automation Tools in Action

Docker

This automation process relies heavily on the Docker2 open source tool. Docker allows

components of the PeopleSoft applications to be containerized. This means they are

run in isolation from the host operating system and other containers that run on the host

machine. It also means that because the application is containerized, deployment and

orchestration automation can be developed in a standard way. The Automations

leverage existing infrastructure automations from AWS and use Amazon ECS instead of

building custom automations to provision and scale applications and environments.

In some ways, Docker is similar to virtual machine software. Like virtual machine

software, Docker automates the creation of a well-defined and consistently deployed

workspace. Unlike virtual machine software, Docker accomplishes this by sharing the

host operating system kernel and using kernel functionality to create an isolated

workspace.

Figure 1 – Docker container architecture vs. virtual machine architecture

Amazon Web Services Automating PeopleSoft Environments in the AWS Cloud

 Page 8

Docker uses the kernel in the host machine to create an isolated workspace, known as

a container, where an application and its dependencies can run consistently and

reliably.

The process to create a container begins with a Dockerfile, which is a script written in

the Go programming language, composed of various commands and arguments listed

successively, which perform actions on an existing, base Docker image to create a new,

more specialized Docker image.

Figure 2 – Example of a Dockerfile

The Docker Engine uses the Docker build command to convert the commands and

arguments in a Dockerfile into an image. The Docker Engine comprises a command line

interface (CLI), an API, and a daemon. The daemon is the long running software that

manages Docker images and containers.

An image is a binary file created by the Docker Engine using the build command and

the instructions in the Dockerfile.3 The image is based on the Open Container Initiative

(OCI) standard format. The image file contains an ordered collection of root filesystem

changes (the filesystem changeset) and the corresponding execution parameters

(described in JSON format) for use within a container runtime (the container component

Amazon Web Services Automating PeopleSoft Environments in the AWS Cloud

 Page 9

of the Docker Engine).4 Each pair of changesets and parameters creates a layer within

the image. Each layer is a read-only file generated by running a command from a

Dockerfile.5

A container is an isolated workspace that runs an application, including its

dependencies. The container is created by the Docker Engine using the run command

on an image. The run command creates the container, layer-by-layer, based on the

image. Each image layer is read-only and, when complete, forms the container root

filesystem. When all of the image layers are assembled, a final read/write layer is added

to record the changes made in the container during a session. A container can also be

viewed as a running or instantiated image, with a final read/write layer added.

AWS CloudFormation

AWS CloudFormation is an AWS service through which users can create a template

that describes all the AWS infrastructure resources needed to create user-defined

services. AWS CloudFormation takes care of provisioning and configuring all the

specified infrastructure components and services. The AWS CloudFormation template

describes exactly what resources are provisioned and their settings. Templates are text

files, so users can see the differences in template versions and track changes in their

infrastructure solution. 6

Amazon ECS

Amazon Elastic Container Service (Amazon ECS) is a scalable, container management

solution that supports Docker containers. Amazon ECS schedules, runs, and scales

containerized applications on AWS. Amazon ECS can launch and stop Docker-enabled

applications, query the complete state of such applications, and access many AWS

features, such as IAM roles, security groups, load balancers, and AWS CloudFormation

templates.7

Amazon RDS

Amazon Relational Database Service (Amazon RDS) is a web service that simplifies the

setup, operation, and scaling of a relational database in the AWS Cloud. Amazon RDS

provides cost-efficient, resizable capacity for an industry-standard relational database,

and manages common database administration tasks.8

Amazon Web Services Automating PeopleSoft Environments in the AWS Cloud

 Page 10

Environment Architecture

The application architecture of a PeopleSoft environment in the AWS Cloud was

designed to be scalable for production environments and flexible for smaller workloads

of non-production environments. Using AWS CloudFormation and Amazon ECS

ensures that each environment is deployed and configured in a consistent manner.

Below is a high-level architecture of all of the components that are deployed as part of

the AWS CloudFormation deployments for each environment.

Figure 3 – Architecture for PeopleSoft in AWS with Amazon ECS and Amazon RDS

The AWS CloudFormation templates create the VPC (virtual private cloud), load

balancers, Amazon EC2 servers, Amazon ECS clusters, and Amazon RDS instances,

that form the environments. The Amazon VPC restricts access to the environments to

only customer-approved users.

Amazon Web Services Automating PeopleSoft Environments in the AWS Cloud

 Page 11

Automation scripts and AWS CloudFormation are used to generate two types of

deployments: one for the production environment and one for the non-production

environments. The automation scripts for both the production and non-production

environments use all of the same components, however, they are composed and

behave differently.

Amazon ECS Service Design

Amazon ECS orchestrates Docker containers and creates tasks, or groups of container

services, that are essential elements of the environments. Amazon ECS also monitors

the health of these tasks and launches new tasks if an issue with an existing task is

detected. The Docker images in Amazon ECR and managed by Amazon ECS contain

the instructions necessary to build out the web, application, and batch containers. For

example, the Amazon ECS task definition might combine a web and application

container into a single task which can be monitored and managed by Amazon ECS.

Figure 4 – Example of an Amazon ECS service design

Amazon Web Services Automating PeopleSoft Environments in the AWS Cloud

 Page 12

Scalable Production Deployment

Production environment deployments are built to allow the OLTP (online transaction

processing) application, process scheduler, and integration brokers to be decoupled into

separate Amazon ECS services. This allows each component to be scaled

independently. The following are some examples of methods you can use to scale your

production environments up or down to meet your business needs.

Figure 5 – Example of an off-peak hours, minimal production deployment

In off-peak hours, a production environment can be scaled down to a minimal footprint.

This allows the application to continue to be available, but takes advantage of cost

savings by only running a minimal set of resources.

In this example, there are three Amazon ECS service clusters defined. This allows each

component to be scaled independently. For example, the following diagram shows how

Amazon Web Services Automating PeopleSoft Environments in the AWS Cloud

 Page 13

this architecture can be scaled up from a minimal footprint to handle regular, business-

hour traffic in the web application.

Figure 6 – Example of a peak-hour, scaled-up deployment

In this example, the web/app service cluster has been scaled up to support more end

users. It is not necessary to scale up the IB tasks or batch clusters, so they maintain a

minimal footprint.

This architecture can be scaled up even further to handle peak usage during special

events. Examples for such special events are priority registration times for Campus

Solutions or open enrollment for Human Capital Management. This architecture is

designed to handle such events by only scaling the components required to handle

those special events. The following is an example of a peak, special event deployment

footprint.

Amazon Web Services Automating PeopleSoft Environments in the AWS Cloud

 Page 14

Figure 7 – Example of a peak, special event deployment

Scalable Production Deployment

Non-production environments are designed differently than production environments.

They do not separate web/app instances, IB tasks, and integration broker into separate

services because each component does not need to be scaled independently. The

services also do not span multiple Availability Zones (Multi-AZ) because a high

availability configuration is not necessary.

Similar to off-peak hours, peak-hours, and peak, special event times in production

environments, non-production environments can be configured to only use the

resources required at the time to meet business needs. Non-production environment

usage can be configured into normal-business-hour and non-business-hour

deployments. For example, you might want all non-production environments to be

available from 7:00 AM to 7:00 PM, Monday through Friday. In non-business hours, you

might not need to access those resources, so, from 7:00 PM to 7:00 AM, Monday

Amazon Web Services Automating PeopleSoft Environments in the AWS Cloud

 Page 15

through Friday and on weekends, the environments can be terminated so you are not

paying for resources that are not in use.

The following is an example of how this architecture can be leveraged to support

normal-business-hour and non-business-hour deployments for non-production

environments.

Figure 8 – Examples of non-production environment deployments

Amazon Web Services Automating PeopleSoft Environments in the AWS Cloud

 Page 16

Development in Automated Environments

To use the Automations to rapidly create production and non-production PeopleSoft

environments, you must make changes to the development process for the

enhancements. First, make a distinction between enhancements that reside in the

database and those that reside outside it.

Enhancements that reside inside the database are captured in the database image

when it is created and archived when it is terminated. Those enhancements are created

again when you relaunch the non-production database. These enhancements do not

cause issues for the Automations.

Enhancements that reside in a file system that is outside the database must be

captured and managed separately through processes other than database artifacts.

Such enhancements include custom or customized SQLs, customized COBOLs, and

custom Java classes.

The Automations rely on two open source solutions—Bitbucket and Git—to store and

manage the filesystem enhancements, and to make them available to the Automations.

Git is an open-source version control solution. Bitbucket is a Git repository, which is

essentially a folder with successively saved or committed versions of a project. Git

manages the versions and Bitbucket stores the versions. The Automations pull the

relevant customizations into the associated environment implementations through Git

commands.

The varying states of the non-production environment’s file-based enhancements are

maintained by Git in a Bitbucket repository. The repository can be subdivided into

subfolders or branches. Developers only have access to files or project versions

contained in subfolders or branches that are not used to store the production versions of

enhancements. Only administrators have access to the folders that store stage and

production versions of enhancements.

The Automations pull the correct state of the file-based enhancements from the

associated branches of the Bitbucket repository. This enables the Automations to

launch the environments with the appropriate state of the file-based enhancements.

Amazon Web Services Automating PeopleSoft Environments in the AWS Cloud

 Page 17

Migrating Data

Among the greatest challenges in migrating an enterprise application is migrating the

data. The primary tools that you can use to migrate data for Oracle databases are AWS

Database Migration Service (AWS DMS), AWS Snowball (Snowball), Oracle Data Pump

(Data Pump) and Oracle Materialized Views (Materialized Views).

AWS DMS is a web service that you can use to migrate data from an on-premises

database, an Amazon RDS instance, or a database on an Amazon EC2 instance, to an

Amazon RDS database instance or to a database on an Amazon EC2 instance. AWS

DMS can also migrate a database from an AWS service to an on-premises database.

AWS DMS can migrate data between heterogeneous or homogeneous database

engines.9 In the authors’ experience, AWS DMS is an excellent service for smaller

databases but might be less reliable for enterprise-class data migrations.

AWS Snowball accelerates transferring large amounts of data into and out of AWS

using physical storage devices, which enables you to bypass the internet. Each

Snowball device type can transport data at faster-than internet speeds. The devices

with the data are shipped through a regional carrier.10 Because Snowball relies on

physical delivery of an appliance to complete the migration, it can create timing

uncertainties for migration.

Data Pump provides server-side infrastructure and high-speed, parallel export and

import utilities for highly efficient bulk data and metadata movement between

databases.11 Data Pump is a reliable method of migrating data, but does not include

delta refresh functionality.

A Materialized View is a database object that contains the results of a query.

Materialized Views are local copies of data that is located remotely. Materialized Views

can query tables, views, and other Materialized Views, and can be used to maintain

copies of remote data on a local node.12 In the authors’ experience, a customized

Materialized View tool has proven to be a stable and reliable method for migrating an

enterprise class database.

Amazon Web Services Automating PeopleSoft Environments in the AWS Cloud

 Page 18

Table 1 – Migration tool attribute summary

Migration Tool Runs to Completion Continuously Available Delta Refreshes

AWS DMS ✓ ✓

AWS Snowball ✓

Data Pump ✓ ✓

Materialized Views ✓ ✓ ✓

Network and Security Design

The architecture of production environments is designed for high availability, among

other features. Each layer of the environments—web, application, batch, and

database—is spread across two Availability Zones using Amazon ECS, Amazon RDS,

or other currently available AWS products and services.

Figure 9 – Example of Availability Zones

Amazon Web Services Automating PeopleSoft Environments in the AWS Cloud

 Page 19

Because Amazon ECS functionality allows architects to design tasks that are both

launched and monitored automatically, if a task fails, Amazon ECS tries to launch a new

task, as defined by the user, in either the original availability zone or the alternate

availability zone.

Amazon RDS databases in production environments are configured with high

availability (Multi-AZ), which includes automatic failover functionality. This means that if

a critical fault in the primary database occurs, the secondary database automatically

becomes the primary database. This Multi-AZ availability enables existing AWS network

technology to maintain high availability.

AWS features a shared responsibility security structure.13 Only AWS staff have access

to AWS data centers, servers, storage, and other appliances. Only AWS account

holders have access to applications and data. All of the AWS services described in this

architecture exist in a VPC. Access to the VPC is controlled solely by the AWS account

holder. The application, data, and services in the VPC are also controlled exclusively by

AWS account holders, based on their security roles, processes, and procedures.

Deploying the Solution

In a traditional PeopleSoft implementation, web, application, batch, and database

servers must be set up and configured, one-by-one, manually, environment-by-

environment. With this kind of manual process, you are likely to have inconsistencies

between environments which become exacerbated over time. With the automated

PeopleSoft solution, the Automations build the web, application, batch, and database

servers with perfect consistency, because the set up and configuration processes share

a common, underlying code. If servers become corrupt over time, they can be

relaunched with very little effort to restore consistency and functionality.

Amazon Web Services Automating PeopleSoft Environments in the AWS Cloud

 Page 20

Managing the Solution

Some aspects of managing the automated PeopleSoft solution are identical to

managing an on-premises solution, but others are radically different.

1. Scaling – AWS Auto Scaling functionality, linked to such metrics as CPU or

memory utilization, can accommodate small changes in traffic without manual

intervention.14 Event scaling, such as that required for university registration or

year-end reporting, is accomplished using the Automations.

2. Launching and terminating – Because the Automations can launch the non-

production environments in about 40 minutes, the non-production environments

can be terminated during non-business hours and relaunched immediately prior

to the start of business hours.

3. Application patches and upgrades – Any upgrade that alters the state of the

database must use traditional methods to make changes to the database. This

includes using an upgrade tool and reapplying customizations, instance-by-

instance, to the upgraded database.

4. Server upgrades – To upgrade your server, revise your Dockerfiles to show the

current version of the server software. Create a new image with Docker Engine

and tag it as the new version. Then use Amazon ECS to call the new Docker

image and launch the container services. When the new image is stored in

Amazon ECR, the new version of the servers can be launched repeatedly for

various pillars, or servers in a pillar.

5. Database upgrades – Because the Automations use Amazon RDS to provide

the database services, you can upgrade your database by simply calling the new

version of Amazon RDS database; no other steps are required. For RDS

instances with Multi A-Z enabled, the upgrade occurs without an outage. If Multi

A-Z is not enabled, a brief outage occurs.

Amazon Web Services Automating PeopleSoft Environments in the AWS Cloud

 Page 21

Conclusion

AWS provides a tremendous amount of on-demand infrastructure services for cloud

storage. Until recently, PeopleSoft users who migrated to AWS have used the many

AWS infrastructure services with a data center outsourcing model. Though this model

uses AWS infrastructure services, the implementation is subject to the same pillar-by-

pillar inconsistencies and degradation over time as an on-premises implementation.

The migration approach recommended in this paper augments delivered AWS

infrastructure services functionality with the Automations, which empower users to much

more effectively and economically administer a PeopleSoft implementation. Because

the Automations can launch the non-production instances so quickly, these instances

can be terminated during non-business hours. Because the Automations are used to

administer all the environments in the implementation, a high degree of consistency is

maintained among the environments. The stability of all the environments is also

engineered into the Automations. Improvements are managed by re-engineering the

Automations and are then quickly pushed out to all the environments after they are

validated and approved.

PeopleSoft administrators and users can get great administrative and economic benefits

from using AWS services as on-demand infrastructure services.

Contributors

Authors of this document include:

• Jeff Davis, Partner, The Burgundy Group, Inc.

• Josh Shaloo, Managing Director, The Burgundy Group, Inc.

Additional contributors to this document include:

• Ashok Shanmuga Sundaram, Solutions Architect, Amazon Web Services

Document Revisions

Date Description

April 2019 First publication

Amazon Web Services Automating PeopleSoft Environments in the AWS Cloud

 Page 22

1 Overview of Amazon Web Services

http://d0.awsstatic.com/whitepapers/aws-overview.pdf

2 Docker Overview

https://docs.docker.com/engine/docker-overview/

3 Images and Containers

https://docs.openshift.com/enterprise/3.0/architecture/core_concepts/containers_and_i

mages.html

4 Docker Image Specification v1.0.0

https://github.com/moby/moby/blob/master/image/spec/v1.md

5 Digging Into Docker Layers

https://medium.com/@jessgreb01/digging-into-docker-layers-c22f948ed612

6 What is CloudFormation?

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html

7 Amazon Elastic Container Service

https://aws.amazon.com/ecs/

8 What is Amazon Relational Database Service (Amazon RDS)?

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html

9 AWS Database Migration Service Documentation

https://docs.aws.amazon.com/dms/index.html#lang/en_us

10 AWS Snowball User Guide

https://docs.aws.amazon.com/snowball/latest/ug/whatissnowball.html

11 Oracle Data Pump Overview

https://www.oracle.com/technetwork/documentation/data-pump-overview-084963.html

12 Materialized Views In Oracle

https://www.databasejournal.com/features/oracle/article.php/2192071/Materialized-

Views-in-Oracle.htm

13 AWS Security Best Practices

https://d1.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practices.pdf

14 AWS Auto Scaling

https://aws.amazon.com/autoscaling/

Notes

http://d0.awsstatic.com/whitepapers/aws-overview.pdf
https://docs.docker.com/engine/docker-overview/
https://docs.openshift.com/enterprise/3.0/architecture/core_concepts/containers_and_images.html
https://docs.openshift.com/enterprise/3.0/architecture/core_concepts/containers_and_images.html
https://github.com/moby/moby/blob/master/image/spec/v1.md
https://medium.com/@jessgreb01/digging-into-docker-layers-c22f948ed612
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://aws.amazon.com/ecs/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/dms/index.html#lang/en_us
https://docs.aws.amazon.com/snowball/latest/ug/whatissnowball.html
https://www.oracle.com/technetwork/documentation/data-pump-overview-084963.html
https://www.databasejournal.com/features/oracle/article.php/2192071/Materialized-Views-in-Oracle.htm
https://www.databasejournal.com/features/oracle/article.php/2192071/Materialized-Views-in-Oracle.htm
https://d1.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practices.pdf
https://aws.amazon.com/autoscaling/

	Automations Approach
	Benefits of Automating PeopleSoft Environments in the AWS Cloud
	Amazon Web Services Functionality in Use
	Network
	Amazon Route 53
	Amazon VPC

	Compute
	Amazon EC2
	Amazon ECR
	Amazon ECS
	ELB

	Storage
	Amazon EBS
	Amazon EFS
	Amazon S3

	Database
	Amazon RDS

	Automation Tools in Action
	Docker
	AWS CloudFormation
	Amazon ECS
	Amazon RDS

	Environment Architecture
	Amazon ECS Service Design
	Scalable Production Deployment
	Scalable Production Deployment

	Development in Automated Environments
	Migrating Data
	Network and Security Design
	Deploying the Solution
	Managing the Solution
	Conclusion
	Contributors
	Document Revisions

