
Fault-Tolerant Components on
AWS

November 2019

Notices

Customers are responsible for making their own independent assessment of the

information in this document. This document: (a) is for informational purposes only, (b)

represents current AWS product offerings and practices, which are subject to change

without notice, and (c) does not create any commitments or assurances from AWS and

its affiliates, suppliers or licensors. AWS products or services are provided “as is”

without warranties, representations, or conditions of any kind, whether express or

implied. The responsibilities and liabilities of AWS to its customers are controlled by

AWS agreements, and this document is not part of, nor does it modify, any agreement

between AWS and its customers.

© 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Introduction .. 1

Failures Shouldn’t Be THAT Interesting ... 1

Amazon Elastic Compute Cloud .. 1

Elastic Block Store ... 3

Auto Scaling ... 4

Failures Can Be Useful ... 5

AWS Global Infrastructure .. 6

AWS Regions and Availability Zones .. 6

High Availability Through Multiple Availability Zones .. 6

Building Architectures to Achieve High Availability ... 7

Improving Continuity with Replication Between Regions.. 7

High Availability Building Blocks ... 7

Elastic IP Addresses .. 7

Elastic Load Balancing ... 8

Amazon Simple Queue Service ... 10

Amazon Simple Storage Service ... 11

Amazon Elastic File System and Amazon FSx for Windows File Server 12

Amazon Relational Database Service ... 12

Amazon DynamoDB ... 13

Using Serverless Architectures for High Availability .. 14

What is Serverless? ... 14

Using Continuous Integration and Continuous Deployment/Delivery to Roll-out

Application Changes.. 15

What is Continuous Integration?.. 15

What is Continuous Deployment/Delivery? ... 15

How Does This Help? .. 16

Utilize Immutable Environment Updates ... 16

Leverage AWS Elastic Beanstalk .. 16

Amazon CloudWatch ... 17

Conclusion ... 17

Contributors ... 17

Further Reading ... 18

Document Revisions.. 18

Abstract

This whitepaper provides an introduction to building fault-tolerant software systems

using Amazon Web Services (AWS). You will learn about the diverse array of AWS

services at your disposal including compute, storage, networking, and database

solutions. By leveraging these solutions, you can set up an infrastructure that refreshes

automatically, helping you to avoid degradations and points of failures. The AWS

platform can be operated with minimal human interaction and up-front financial

investment. In addition, you will learn about the AWS Global Infrastructure, an

architecture that provides high availability using AWS Regions and Availability Zones.

This paper is intended for IT managers and system architects looking to deploy or

migrate their solutions to the cloud, using a platform that provides highly available,

reliable, and fault-tolerant systems.

Amazon Web Services Fault-Tolerant Components on AWS

 Page 1

Introduction

Fault-tolerance is the ability for a system to remain in operation even if some of the

components used to build the system fail. Even with very conservative assumptions, a

busy e-commerce site may lose thousands of dollars for every minute it is unavailable.

This is just one reason why businesses and organizations strive to develop software

systems that can survive faults. Amazon Web Services (AWS) provides a platform that

is ideally suited for building fault-tolerant software systems. The AWS platform enables

you to build fault-tolerant systems that operate with a minimal amount of human

interaction and up-front financial investment.

Failures Shouldn’t Be THAT Interesting

The ideal state in a traditional, on-premises data center environment tends to be one

where failure notifications are delivered reliably to a staff of administrators who are

ready to take quick and decisive actions in order to solve the problem. Many

organizations are able to reach this state of IT nirvana, however, doing so typically

requires extensive experience, up-front financial investment, and significant human

resources. Amazon Web Services provides services and infrastructure to build reliable,

fault-tolerant, and highly available systems in the cloud. As a result, potential failures

can be dealt with automatically by the system itself and, as a result, are fairly

uninteresting events.

AWS gives you access to a vast amount of IT infrastructure—compute, storage,

networking, and databases just to name a few (such as Amazon Elastic Compute Cloud

(Amazon EC2), Amazon Elastic Block Store (Amazon EBS), and Auto Scaling)—that

you can allocate automatically (or nearly automatically) to account for almost any kind of

failure. You are charged only for resources that you actually use, so there is no up-front

financial investment.

Amazon Elastic Compute Cloud

Amazon Elastic Compute Cloud (Amazon EC2) provides computing resources, literally

server instances, that you use to build and host your software systems. Amazon EC2 is

a natural entry point to AWS for your application development. You can build a highly

reliable and fault-tolerant system using multiple EC2 instances and ancillary services

such as Auto Scaling and Elastic Load Balancing.

Amazon Web Services Fault-Tolerant Components on AWS

 Page 2

On the surface, EC2 instances are very similar to traditional hardware servers. EC2

instances use familiar operating systems like Linux or Windows. As such, they can

accommodate nearly any kind of software that runs on those operating systems. EC2

instances have IP addresses so the usual methods of interacting with a remote machine

(for example, SSH or RDP) can be used. The template that you use to define your

service instances is called an Amazon Machine Image (AMI) which contains a defined

software configuration (that is, operating system, application server, and applications).

From an AMI, you launch an instance, which is a copy of the AMI running as a virtual

server in the cloud. You can launch multiple instances of an AMI, as shown in the

following figure.

Instance types in Amazon EC2 are essentially hardware archetypes. You choose an

instance type that matches the amount of memory (RAM) and computing power

(number of CPUs) that you need for your application. Your instances keep running until

you stop or terminate them, or until they fail. If an instance fails, you can launch a new

one from the AMI.

Amazon publishes many AMIs that contain common software configurations for public

use. In addition, members of the AWS developer community have published their own

custom AMIs. You can also create your own custom AMI, enabling you to quickly and

easily start new instances that contain the software configuration you need.

The first step towards building fault-tolerant applications on AWS is to decide on how

the AMIs will be configured. There are two distinct mechanisms to do this, dynamic and

static. A dynamic configuration starts with a base AMI and, on launch, deploys the

software and data required by the application. A static configuration deploys the

required software and data to the base AMI and then uses this to create an application-

specific AMI that is used for application deployment. Take the following factors into

account when deciding to use either a dynamic or static configuration:

Amazon Web Services Fault-Tolerant Components on AWS

 Page 3

• The frequency of application changes—a dynamic configuration offers greater

flexibility for frequent application changes.

• Speed of launch—an application installed on the AMI reduces the time between

launch and when the instance becomes available. If this is important then a

static configuration minimizes the launch time.

• Audit—when an audit trail of the application configuration is required, then a

static configuration combined with a retention policy for AMIs allows past

configurations to be recreated.

It is possible to mix dynamic and static configurations. A common pattern is for the

application software to be deployed on the AMI while data is deployed once the

instance is launched. Your application should be comprised of at least one AMI that you

have configured. To start your application, launch the required number of instances

from your AMI. For example, if your application is a website or a web service, your AMI

could include a web server, the associated static content, and the code for the dynamic

pages. As a result, after you launch an instance from this AMI, your web server starts

and your application is ready to accept requests.

When the required fleet of instances from the AMI is launched then an instance failure

can be addressed by launching a replacement instance that uses the same AMI. This

can be done through an API invocation, scriptable command-line tools, or the AWS

Management Console. Additionally, an Auto Scaling group can be configured to

automatically replace failed or degraded instances. The ability to quickly replace a

problematic instance is just the first step towards fault-tolerance. With AWS, an AMI lets

you launch a new instance based on the same template, allowing you to quickly recover

from failures or problematic behaviors.

To minimize downtime, you have the option to keep a spare instance running, ready to

take over in the event of a failure. This can be done efficiently using elastic IP

addresses. Failover to a replacement instance or (running) spare instance by

remapping your elastic IP address to the new instance.

Elastic Block Store

Amazon Elastic Block Store (Amazon EBS) provides persistent block storage volumes

for use with Amazon EC2 instances. EBS volumes can be attached to a running EC2

instance and can persist independently from the instance. EBS volumes are

automatically replicated within an Availability Zone, providing high durability and

availability, along with protection from component failure.

Amazon Web Services Fault-Tolerant Components on AWS

 Page 4

Amazon EBS is especially suited for applications that require a database, a file system,

or access to raw block storage. Typical use cases include big data analytics, relational

or NoSQL databases, stream or log processing applications, and data warehousing

applications.

Amazon EBS and Amazon EC2 are often used in conjunction with one another when

building a fault-tolerant application on the AWS platform. Any application data that

needs to be persisted should be stored on EBS volumes. If the EC2 instance fails and

needs to be replaced, the EBS volume can simply be attached to the new EC2 instance.

Since this new instance is essentially a duplicate of the original, there should be no loss

of data or functionality.

Amazon EBS volumes are highly reliable, but to further mitigate the possibility of a

failure, backups of these volumes can be created using a feature called snapshots. A

robust backup strategy will include an interval (time between backups, generally daily

but perhaps more frequently for certain applications), a retention period (dependent on

the application and the business requirements for rollback), and a recovery plan. To

ensure high durability for backups of EBS volumes, snapshots are stored in Amazon

Simple Storage Service (Amazon S3).

EBS snapshots are used to create new Amazon EBS volumes, which are an exact

replica of the original volume at the time the snapshot was taken. Because snapshots

represent the on-disk state of the application, care must be taken to flush in-memory

data to disk before initiating a snapshot.

EBS snapshots are created and managed using the API, AWS Management Console,

Amazon Data Lifecycle Manager (DLM), or AWS Backup.

Auto Scaling

An Auto Scaling group contains a collection of Amazon EC2 instances that are treated

as a logical grouping for the purposes of automatic scaling and management. In the

context of a highly available solution, using an Auto Scaling group ensures that an EC2

fleet provides the required capacity. The continuous monitoring of the fleet instance

health metrics allows for failures to be automatically detected and for replacement

instances to be launched when required.

Where the required size of the EC2 fleet varies Auto Scaling can adjust the capacity

using a number of criteria including scheduled and targeted tracking against the value

for a specific metric. Multiple scaling criteria can be applied providing a flexible

mechanism to manage EC2 capacity.

Amazon Web Services Fault-Tolerant Components on AWS

 Page 5

The requirements of your application and high availability (HA) strategy determines the

number of Auto Scaling groups needed. For an application that uses EC2 capacity

spread across one or more Availability Zones (AZ) then a single Auto Scaling group

suffices. Capacity launches where available and the Auto Scaling group replaces

instances as required; but the placement within selected AZs is arbitrary. If the HA

strategy requires more precise control of the distribution of EC2 capacity deployments,

then using an Auto Scaling group per AZ is the appropriate solution. An example is an

application with two instances—production and fail-over—that needs to be deployed in

separate Availability Zones. Using two Auto Scaling groups to manage the capacity of

each application instance separately ensures that they do not both have capacity in the

same Availability Zone.

Failures Can Be Useful

Software systems degrade over time. This is due in part to:

• Software leaking memory and/or resources, including software that you wrote

and software that you depend on (such as application frameworks, operating

systems, and device drivers).

• File systems fragmenting over time which impacts performance.

• Hardware (particularly storage) devices physically degrading over time.

Disciplined software engineering can mitigate some of these problems, but ultimately,

even the most sophisticated software system depends on a number of components that

are out of its control (such as the operating system, firmware, and hardware).

Eventually, some combination of hardware, system software, and your software will

cause a failure and interrupt the availability of your application.

In a traditional IT environment, hardware can be regularly maintained and serviced, but

there are practical and financial limits to how aggressively this can be done. However,

with Amazon EC2, you can terminate and recreate the resources you need at will.

An application that takes full advantage of the AWS platform can be refreshed

periodically with new server instances. This ensures that any potential degradation does

not adversely affect your system as a whole. Essentially, you are using what would be

considered a failure (such as a server termination) as a forcing function to refresh this

resource.

Amazon Web Services Fault-Tolerant Components on AWS

 Page 6

Using this approach, an AWS application is more accurately defined as the service it

provides to its clients, rather than the server instance(s) it is comprised of. With this

mindset, server instances become immaterial and even disposable.

AWS Global Infrastructure

To build fault-tolerant applications in AWS, it is important to understand the architecture

of the AWS Global Infrastructure. The AWS Global Infrastructure is built around

Regions and Availability Zones.

AWS Regions and Availability Zones

An AWS Region is a geographical area of the world. Each AWS Region is a collection

of data centers that are logically grouped into what we call Availability Zones. AWS

Regions provide multiple (typically three) physically separated and isolated Availability

Zones which are connected with low latency, high throughput, and highly redundant

networking1. Each AZ consists of one or more physical data centers. Availability Zones

are designed for physical redundancy and provide resilience, enabling uninterrupted

performance, even in the event of power outages, Internet downtime, floods, and other

natural disasters.

Note: Refer to the Global Infrastructure page for current information about AWS
Regions and Availability Zones or our interactive map.

High Availability Through Multiple Availability Zones

Availability Zones are connected to each other with fast, private fiber-optic networking,

enabling you to architect applications that automatically fail-over between AZs without

interruption. These AZs offer AWS customers an easier and more effective way to

design and operate applications and databases, making them more highly available,

fault tolerant, and scalable than traditional single data center infrastructures or multi-

data center infrastructures.

1 Asia Pacific (Osaka) is a Local Region with a single AZ that is available to select AWS

customers to provide regional redundancy in Japan.

https://aws.amazon.com/about-aws/global-infrastructure/
https://infrastructure.aws/

Amazon Web Services Fault-Tolerant Components on AWS

 Page 7

Building Architectures to Achieve High Availability

You can achieve high availability by deploying your applications to span across multiple

Availability Zones. For each application tier (that is, web, application, and database),

placing multiple, redundant instances in distinct AZs creates a multi-site solution. Using

Elastic Load Balancing (ELB), you get improved fault tolerance as the ELB service

automatically balances traffic across multiple instances in multiple Availability Zones,

ensuring that only healthy instances receive traffic. The desired goal is to have an

independent copy of each application stack in two or more AZs, with automated traffic

routing to healthy resources.

Improving Continuity with Replication Between

Regions

In addition to replicating applications and data across multiple data centers in the same

Region using Availability Zones, you can also choose to increase redundancy and fault

tolerance further by replicating data between geographic Regions. You can do so using

both private, high speed networking and public internet connections to provide an

additional layer of business continuity, or to provide low latency access across the

globe.

High Availability Building Blocks

Amazon EC2 and its related services provide a powerful, yet economic platform upon

which to deploy and build your applications. However, they are just one aspect of the

Amazon Web Services platform. AWS offers a number of other services that can be

incorporated into your application development and deployments to increase the

availability of your applications.

Elastic IP Addresses

An Elastic IP address is a static, public, IPv4 address allocated to your AWS account.

With an Elastic IP address, you can mask the failure of an instance or software by

rapidly remapping the address to another instance in your account. Elastic IPs do not

change and remain allocated to your account until you delete them.

An Elastic IP address is allocated from the public AWS IPv4 network ranges in a

specific region. If your instance does not have a public IPv4 address, you can associate

an Elastic IP address with your instance to enable communication with the internet; for

Amazon Web Services Fault-Tolerant Components on AWS

 Page 8

example, to connect to your instance from your local computer. Elastic IP addresses are

mapped via an Internet Gateway to the private address of the instance. Once you

associate an Elastic IP address with an instance, it remains associated until you remove

the association or associate the address with another resource.

Elastic IP addresses are one method for handling failover, especially for legacy type

applications that cannot be scaled horizontally. In the event of a failure of a single

server with an associated Elastic IP address, the failover mechanism can re-associate

the Elastic IP address to a replacement instance, ideally in an automated fashion. While

this scenario may experience downtime for the application, the time may be limited to

the time it takes to detect the failure and quickly re-associate the Elastic IP address to

the replacement resource.

Where higher availability levels are required, you can use multiple instances and an

Elastic Load Balancer.

Elastic Load Balancing

Elastic Load Balancing is an AWS service that automatically distributes incoming

application traffic across multiple targets, such as Amazon EC2 instances, containers,

IP addresses, and Lambda functions, and ensures only healthy targets receive traffic. It

can handle the varying load of your application traffic in a single Availability Zone or

across multiple AZs, and supports the ability to load balance across AWS and on-

premises resources in the same load balancer.

Elastic Load Balancing offers three types of load balancers that all feature the high

availability, automatic scaling, and robust security necessary to make your applications

fault tolerant.

Application Load Balancer

The Application Load Balancer is best suited for load balancing HTTP and HTTPS

traffic and provides advanced request routing targeted at the delivery of modern

application architectures, including microservices and containers. Operating at the

individual request level (Layer 7), the Application Load Balancer routes traffic to targets

within Amazon Virtual Private Cloud (Amazon VPC) based on the content of the

request.

Amazon Web Services Fault-Tolerant Components on AWS

 Page 9

Network Load Balancer

Network Load Balancer is best suited for load balancing of Transmission Control

Protocol (TCP), User Datagram Protocol (UDP), and Transport Layer Security (TLS)

traffic where extreme performance is required. Operating at the connection level (Layer

4), Network Load Balancer routes traffic to targets within Amazon VPC and is capable

of handling millions of requests per second while maintaining ultra-low latencies.

Network Load Balancer is also optimized to handle sudden and volatile traffic patterns.

Benefits of Using Elastic Load Balancing

• Highly available—Elastic Load Balancing automatically distributes incoming

traffic across multiple targets—Amazon EC2 instances, containers, IP

addresses, and Lambda functions—in multiple AZs and ensures only healthy

targets receive traffic. The Amazon Elastic Load Balancing Service Level

Agreement commitment is 99.99% availability for a load balancer.

• Secure—Elastic Load Balancing works with Amazon VPC to provide robust

security features, including integrated certificate management, user-

authentication, and SSL/TLS decryption. Together, they give you the flexibility to

centrally manage TLS settings and offload CPU intensive workloads from your

applications.

• Elastic—Elastic Load Balancing is capable of handling rapid changes in network

traffic patterns. Additionally, deep integration with Auto Scaling ensures

sufficient application capacity to meet varying levels of application load without

requiring manual intervention.

• Flexible—Elastic Load Balancing also allows you to use IP addresses to route

requests to application targets. This offers you flexibility in how you virtualize

your application targets, allowing you to host more applications on the same

instance. This also enables these applications to have individual security groups

and use the same network port to further simplify inter-application

communication in microservice-based architecture.

• Robust monitoring & auditing—Elastic Load Balancing allows you to monitor

your applications and their performance in real time with Amazon CloudWatch

metrics, logging, and request tracing. This improves visibility into the behavior of

your applications, uncovering issues and identifying performance bottlenecks in

your application stack at the granularity of an individual request.

Amazon Web Services Fault-Tolerant Components on AWS

 Page 10

• Hybrid load balancing—Elastic Load Balancing offers ability to load balance

across AWS and on-premises resources using the same load balancer. This

makes it easy for you to migrate, burst, or failover on-premises applications to

the cloud.

Amazon Simple Queue Service

Amazon Simple Queue Service (Amazon SQS) is a fully managed message queuing

service that enables you to decouple and scale microservices, distributed systems, and

serverless applications. Amazon SQS eliminates the complexity and overhead

associated with managing and operating message-oriented middleware, and empowers

developers to focus on differentiating work. Using Amazon SQS, you can send, store,

and receive messages between software components at any volume, without losing

messages or requiring other services to be available.

Messages are stored in queues that you create. Each queue is defined as a URL, so it

can be accessed by any server that has access to the Internet, subject to the Access

Control List (ACL) of that queue. Use Amazon SQS to ensure that your queue is always

available; any messages that you send to a queue are retained for up to 14 days.

SQS offers two types of message queues. Standard queues offer maximum throughput,

best-effort ordering, and at-least-once delivery with best-effort ordering. SQS FIFO

queues offer high throughput and are designed to guarantee that messages are

processed exactly once, in the exact order that they are sent.

Using Amazon SQS with Other AWS Infrastructure Web Services

Amazon SQS message queuing can be used with other AWS Services such as Amazon

Redshift, Amazon DynamoDB, Amazon Relational Database Service (Amazon RDS),

Amazon EC2, Amazon Elastic Container Service (Amazon ECS), AWS Lambda, and

Amazon S3, to make distributed applications more scalable and reliable. Common

design patterns include:

• Work Queues—Decouple components of a distributed application that may not

all process the same amount of work simultaneously.

• Buffer and Batch Operations—Add scalability and reliability to your

architecture, and smooth out temporary volume spikes without losing messages

or increasing latency.

• Request Offloading—Move slow operations off of interactive request paths by

enqueuing the request.

Amazon Web Services Fault-Tolerant Components on AWS

 Page 11

• Fanout—Combine SQS with Simple Notification Service (SNS) to send identical

copies of a message to multiple queues in parallel.

• Priority—Use separate queues to provide prioritization of work.

• Scalability—Scale up the send or receive rate of messages by adding another

process since message queues decouple your processes.

• Resiliency—Continue adding messages to the queue even if a process that is

reading messages from the queue fails; once the system recovers the queue

can be processed since message queues decouple components of your system.

Amazon Simple Storage Service

Amazon S3 is an object storage service that provides highly durable, secure, fault-

tolerant data storage. AWS is responsible for maintaining availability and fault-tolerance;

you simply pay for the storage that you use. Data is stored as objects within resources

called buckets and a single object can be up to 5 terabytes in size.

Behind the scenes, Amazon S3 stores objects redundantly on multiple devices across

multiple facilities in an AWS Region—so even in the rare case of a failure in an AWS

data center, you will still have access to your data. Amazon S3 is designed for

99.999999999% (11 9's) of durability and stores data for millions of applications for

companies globally.

Amazon S3 is ideal for any kind of object data storage requirements that your

application might have. Amazon S3 can be accessed using the AWS Management

Console, by a URL, through a Command Line Interface (CLI), or via API using an SDK

with your programming language of choice.

The versioning feature in Amazon S3 allows you to retain prior versions of objects

stored in S3 and also protects against accidental deletions initiated by a misbehaving

application. Versioning can be enabled for any of your S3 buckets. You can also use

either S3 Cross-Region Replication (CRR) to replicate objects in another region or

Same-Region Replication (SRR) to replicate objects in the same AWS Region for

reduced latency, security, disaster recovery, and other use cases.

In addition to providing highly available storage, Amazon S3 provides multiple storage

classes to help reduce storage costs while still providing high availability and durability.

Using S3 Lifecycle policies, objects can be transferred to lower cost storage. If you are

unsure of your data access patterns, you can select S3 Intelligent-Tiering, which

automatically moves your data based on changing access patterns.

Amazon Web Services Fault-Tolerant Components on AWS

 Page 12

By using Amazon S3, you can delegate the responsibility of one critical aspect of fault-

tolerance—data storage—to AWS.

Amazon Elastic File System and Amazon FSx for

Windows File Server

While Amazon S3 is ideal for applications that can access data as objects, many

applications store and access data as files. Amazon Elastic File System (Amazon EFS)

and Amazon FSx for Windows File Server (Amazon FSx) are fully-managed AWS

services that provide file-based storage for applications.

Amazon EFS provides a simple, scalable, elastic file system for Linux-based workloads.

File systems grow and shrink on demand and can scale to petabytes of capacity.

Amazon EFS is a regional service storing data within and across multiple Availability

Zones for high availability and durability. Applications that need access to shared

storage from multiple EC2 instances can store data reliably and securely on Amazon

EFS.

Amazon FSx provides a fully managed native Microsoft Windows file system so you can

move your Windows-based applications that require file storage to AWS. With Amazon

FSx, you can launch highly durable and available Windows file systems that can be

accessed from up to thousands of application instances. Amazon FSx is highly available

within a single AZ. For applications that require additional levels of availability, Amazon

FSx supports the use of Distributed File System (DFS) Replication to enable multi-AZ

deployments.

Using either Amazon EFS or Amazon FSx, you can provide highly available, fault-

tolerant file storage to your applications running in AWS.

Amazon Relational Database Service

Amazon Relational Database Service guides you in the setup, operation, and scaling a

relational database in the cloud. It provides cost-efficient and resizable capacity while

automating time-consuming administration tasks such as hardware provisioning,

database setup, patching, and backups. It frees you to focus on your applications so

you can give them the fast performance, high availability, security, and compatibility

they need.

Amazon RDS is available on several database instance types and is optimized for

memory, performance, or I/O. You can choose from six familiar database engines

Amazon Web Services Fault-Tolerant Components on AWS

 Page 13

including Amazon Aurora, PostgreSQL, MySQL, MariaDB, Oracle Database, and SQL

Server.

Amazon RDS has many features that enhance reliability for critical production

databases, including automated backups, database snapshots, and automatic host

replacement.

• Administration—Go from project conception to deployment using the Amazon

RDS Management Console, the AWS RDS CLI, or API calls to access the

capabilities of a production-ready relational database in minutes. No need for

infrastructure provisioning or installing and maintaining database software.

• Scalability—Scale your database compute and storage resources using the

console or an API call, often with no downtime. Many Amazon RDS engine types

allow you to launch one or more Read Replicas to offload read traffic from your

primary database instance.

• Availability—Run on the same highly reliable infrastructure used by other

Amazon Web Services. Use Amazon RDS for replication to enhance availability

and reliability for production workloads across Availability Zones. Use the Multi-

AZ deployment option to run mission-critical workloads with high availability and

built-in automated fail-over from your primary database to a synchronously

replicated secondary database.

• Security—Control network access to your database by running your database

instances in an Amazon VPC, which enables you to isolate your database

instances and to connect to your existing IT infrastructure through an industry-

standard encrypted IPsec VPN. Many Amazon RDS engine types offer

encryption at rest and encryption in transit.

• Cost—Pay for only the resources you actually consume with no up-front or long-

term commitments. You have the flexibility to use on-demand resources or utilize

our Reserved Instance pricing to further reduce your costs.

Amazon DynamoDB

Amazon DynamoDB is a key-value and document database that delivers single-digit

millisecond performance at any scale. It's a fully managed, multi-region, multi-master

database with built-in security, backup and restore, and in-memory caching for internet-

scale applications.

Amazon Web Services Fault-Tolerant Components on AWS

 Page 14

Amazon DynamoDB is purpose-built for mission-critical workloads. DynamoDB helps

secure your data with encryption at rest by default and continuously backs up your data

for protection, with guaranteed reliability through a service level agreement. Point-in-

time recovery (PITR) helps protect DynamoDB tables from accidental write or delete

operations. PITR provides continuous backups of your DynamoDB table data, and you

can restore that table to any point in time up to the second during the preceding 35

days.

With Amazon DynamoDB, there are no servers to provision, patch, or manage, and no

software to install, maintain, or operate. DynamoDB automatically scales tables to

adjust for capacity and maintains performance with zero administration. Availability and

fault tolerance are built in, eliminating the need to architect your applications for these

capabilities.

Using Serverless Architectures for High

Availability

What is Serverless?

Serverless is the native architecture of the cloud that enables you to shift more of your

operational responsibilities to AWS, increasing your agility and innovation. Serverless

allows you to build and run applications and services without thinking about servers. It

eliminates infrastructure management tasks such as server or cluster provisioning,

patching, operating system maintenance, and capacity provisioning. Serverless

provides built-in availability and fault tolerance. You don't need to architect for these

capabilities since the services running the application provide them by default.

Central to many serverless designs is AWS Lambda. AWS Lambda automatically runs

your code on highly available, fault-tolerant infrastructure spread across multiple

Availability Zones in a single region without requiring you to provision or manage

servers. With Lambda, you can run code for virtually any type of application or backend

service no administration. Upload your code and Lambda will run and scale your code

with high availability. You can set up your code to automatically trigger from other AWS

services or call it directly from any web or mobile app. AWS Lambda automatically

scales your application by running code in response to each trigger. Your code runs in

parallel and processes each trigger individually, scaling precisely with the size of the

workload.

In addition to AWS Lambda, other AWS serverless technologies include:

Amazon Web Services Fault-Tolerant Components on AWS

 Page 15

• AWS Fargate—a serverless compute engine for containers

• Amazon DynamoDB—a fast and flexible NoSQL database

• Amazon Aurora Serverless—a MySQL compatible relational database

• Amazon API Gateway—a service to create, publish, monitor and secure APIs

• Amazon S3—a secure, durable and highly scalable object storage

• Amazon Elastic File System—a simple, scalable, elastic file storage

• Amazon SNS—a fully managed pub/sub messaging service

• Amazon SQS—a fully managed message queuing service

Note: While a full discussion on Serverless capabilities is outside the
scope of this paper, you may find additional information about Serverless
Computing on our website.

Using Continuous Integration and Continuous

Deployment/Delivery to Roll-out Application

Changes

What is Continuous Integration?

Continuous integration (CI) is a software development practice where developers

regularly merge their code changes into a central repository, after which automated

builds and tests are run.

What is Continuous Deployment/Delivery?

Continuous deployment/delivery (CD) is a software development practice where code

changes are automatically built, tested, and prepared for production release. It expands

on continuous integration by deploying all code changes to a testing environment, a

production environment, or both after the build stage has been completed. Continuous

delivery can be fully automated with a workflow process or partially automated with

manual steps at critical points.

https://aws.amazon.com/serverless/
https://aws.amazon.com/serverless/

Amazon Web Services Fault-Tolerant Components on AWS

 Page 16

How Does This Help?

Continuous integration and continuous deployment/delivery tools remove the human

factor of rolling out application changes and instead add automation as much as

possible. Prior to CI/CD tools, scripts were used which required manual intervention or

kick off process. Many deployments occurred during the weekends to minimize potential

disruptions to the business and could be quickly rolled back if issues arose. Deployment

steps were usually documented in runbooks.

AWS CodeBuild, AWS CodePipeline, and AWS CodeDeploy are part of the CI/CD

services that DevOps teams use to deploy applications or application changes in their

environment. For example, a single pipeline can roll out application changes in one

region and, if successful, the same pipeline rolls out the changes in other regions.

With a streamlined CI/CD pipeline, developers can deploy application changes which

are transparent to end users. These pipelines can be leveraged to perform multi-region

deployments or to quickly deploy a bug fix. If a fault occurs in one environment, users

can be redirected to another environment (or region) and updates can be rolled out to

the faulty environment. Once the fault has been addressed, you can redirect users back

to the original environment.

Utilize Immutable Environment Updates

An immutable environment is a type of infrastructure in which resources (that is,

servers) are never modified once they have been deployed. Typically, these servers are

built from a common image (such as an Amazon Machine Image). The benefit of this

type of environment is increased reliability, consistency and a more predictable

environment. In AWS, this can be achieved by creating the infrastructure using AWS

CloudFormation or AWS Cloud Development Kit (CDK).

Leverage AWS Elastic Beanstalk

With AWS Elastic Beanstalk, you can quickly deploy and manage applications in the

AWS Cloud without having to learn about the infrastructure that runs those applications.

Elastic Beanstalk reduces management complexity without restricting choice or control.

After uploading your application, Elastic Beanstalk will automatically handle the details

of capacity provisioning, load balancing, scaling, and application health monitoring.

Amazon Web Services Fault-Tolerant Components on AWS

 Page 17

Amazon CloudWatch

Amazon CloudWatch is a fully managed monitoring service for AWS resources and the

applications that you run on top of them. You can use Amazon CloudWatch to collect

and store metrics on a durable platform that is separate and independent from your own

infrastructure. You can use these metrics to measure the performance and response

times and also capture custom metrics for your applications. These metrics that can be

used to do additional actions such as trigger Auto Scaling, Notification, Fan-out, trigger

automated tasks, etc.

To capture the custom metrics, you can publish your own metrics to CloudWatch

through a simple API request.

Conclusion

Amazon Web Services provides services and infrastructure to build reliable, fault-

tolerant, and highly available systems in the cloud. Services that provide basic

infrastructure such as Amazon EC2 and Amazon EBS provide specific features, such as

availability zones, elastic IP addresses, and snapshots. In particular, Amazon EBS

provides durable block storage for applications running on EC2 and an Auto Scaling

group ensures your Amazon EC2 fleet operates at the required capacity, automatically

detects failures, and replaces instances as needed. Higher-level building blocks such as

Amazon S3 provide highly scalable, globally accessible object storage with 11 9s of

durability. For durable, fault tolerant file storage for applications running in AWS, you

can use Amazon EFS and Amazon FSx for Windows. The wide spectrum of building

blocks available give you the flexibility and capability to set up the reliable and highly

available environment you need and only pay for the services you consume.

Contributors

Contributors to this document include:

• Jeff Bartley, Solutions Architect, Amazon Web Services

• Lewis Foti, Solutions Architect, Amazon Web Services

• Bert Zahniser, Solutions Architect, Amazon Web Services

• Muhammad Mansoor, Solutions Architect, Amazon Web Services

Amazon Web Services Fault-Tolerant Components on AWS

 Page 18

Further Reading

Amazon API Gateway

Amazon Aurora

Amazon Aurora Serverless

Amazon CloudWatch

Amazon DynamoDB

Amazon Elastic Block Store

Amazon Elastic Compute Cloud

Amazon Elastic Container Service

Amazon Elastic File System

Amazon FSx for Windows File Server

Amazon Machine Image

Amazon Redshift

Amazon Relational Database Service

Amazon Simple Notification Service

Amazon Simple Queue Service

Amazon Simple Storage Service

Amazon Virtual Private Cloud

AWS Auto Scaling

AWS Cloud Development Kit

AWS CloudFormation

AWS CodeBuild

AWS CodeDeploy

AWS CodePipeline

AWS Command Line Interface

AWS Elastic Beanstalk

AWS Fargate

AWS Global Infrastructure

Region and Availability Zones

AWS Lambda

AWS Management Console

Elastic IP Addresses

Elastic Load Balancing

Serverless

Document Revisions

Date Description

November 2019 Refreshed the paper removing outdated references and adding

newer AWS services not previously available

October 2011 First publication

https://aws.amazon.com/api-gateway/
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/ebs/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ecs/
https://aws.amazon.com/efs/
https://aws.amazon.com/fsx/windows/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://aws.amazon.com/redshift/
https://aws.amazon.com/rds/
https://aws.amazon.com/sns/
https://aws.amazon.com/sqs/
https://aws.amazon.com/s3/
https://aws.amazon.com/vpc/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/cdk/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/cli/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/fargate/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/lambda/
https://aws.amazon.com/console/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/serverless/

	Introduction
	Failures Shouldn’t Be THAT Interesting
	Amazon Elastic Compute Cloud
	Elastic Block Store
	Auto Scaling

	Failures Can Be Useful
	AWS Global Infrastructure
	AWS Regions and Availability Zones
	High Availability Through Multiple Availability Zones
	Building Architectures to Achieve High Availability
	Improving Continuity with Replication Between Regions

	High Availability Building Blocks
	Elastic IP Addresses
	Elastic Load Balancing
	Application Load Balancer
	Network Load Balancer
	Benefits of Using Elastic Load Balancing

	Amazon Simple Queue Service
	Using Amazon SQS with Other AWS Infrastructure Web Services

	Amazon Simple Storage Service
	Amazon Elastic File System and Amazon FSx for Windows File Server
	Amazon Relational Database Service
	Amazon DynamoDB

	Using Serverless Architectures for High Availability
	What is Serverless?

	Using Continuous Integration and Continuous Deployment/Delivery to Roll-out Application Changes
	What is Continuous Integration?
	What is Continuous Deployment/Delivery?
	How Does This Help?
	Utilize Immutable Environment Updates
	Leverage AWS Elastic Beanstalk
	Amazon CloudWatch

	Conclusion
	Contributors
	Further Reading
	Document Revisions

