
Modern Application
Development on AWS

AWS Whitepaper

Modern Application Development on AWS AWS Whitepaper

Modern Application Development on AWS: AWS Whitepaper
Copyright © 2020 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

Modern Application Development on AWS AWS Whitepaper

Table of Contents
Abstract ... 1

Abstract ... 1
Introduction 2

Accelerating the Innovation Flywheel ... 2
Modern Application Development 3

Capabilities of Modern Applications 3
Best Practices of Modern Application Development 4

Security and Compliance 4
Microservice Architecture 5
Using Serverless Technology 5
Automating Deployment with CI/CD 6
Managing Infrastructure as Code 6
Monitoring and Logging 7

Modern Application Design Patterns 8
Implementing Microservice Architectures using AWS Services 8

API Gateways 8
Service Discovery and Service Registries ... 10
Circuit Breaker 12
Command-Query Responsibility Segregation 13
Event Sourcing 16
Choreography 18
Log Aggregation 19
Polyglot Persistence 20

Continuous Integration and Continuous Delivery on AWS 23
CI/CD Services on AWS 23

AWS Cloud9 23
AWS CodeStar ... 24
AWS CodePipeline 24
AWS CodeCommit 24
AWS CodeBuild 24
AWS CodeDeploy 25
AWS Amplify Console 25

CI/CD Patterns for Different Application Types 25
Deploy a Single-Page Application 25
Deploy to Containers ... 26
Deploy to Containers (Blue/Green Deployment) ... 26
Canary Deployments to AWS Lambda 27

Conclusion 29
Contributors ... 30
Further Reading 31

AWS Services 31
Whitepapers 32
Video 32

Document Revisions 33
Notices 34

iii

Modern Application Development on AWS AWS Whitepaper
Abstract

Modern Application Development on
AWS

Publication date: October 2019 (Document Revisions (p. 33))

Abstract
Modern application development using containers and serverless technologies can help your
organization accelerate innovation. This paper includes information about important best practices and
design patterns that you can use to build your modern application in the AWS Cloud.

1

Modern Application Development on AWS AWS Whitepaper
Accelerating the Innovation Flywheel

Introduction
Modern companies are increasingly global, and their products are increasingly digital. These digital
products—such as cloud infrastructure, mobile apps, big data pipelines, and social media—are
influencing application development, which requires an unprecedented pace of change for companies.
To achieve this speed, business leaders must adapt their culture, processes, and technologies to the new
reality of this digital age.

Rapid innovation is vital for modern companies, which must drive growth by making the most of their
human resources, seeking out new opportunities, and nurturing new ideas. Digital technology is at the
core of this rapid innovation.

Accelerating the Innovation Flywheel
Businesses in almost all industries are experiencing an unprecedented pace of change, and rapid
innovation is crucial to improving their pace. Small, unknown competitors can get ahead in a matter of
months by focusing on innovation, so it is essential to not only innovate, but to do so quickly.

Amazon has learned that experiments let you innovate faster. To accelerate innovation, we perform
an experiment, listen to user feedback, and experiment again. We do not fear failure, but apply the
learnings from each experiment in future efforts. We call this the innovation flywheel. To spin this
flywheel rapidly, we need a system to release products, collect feedback, add new features, and release
again. The features of modern applications make this process possible, and enable you to spin the
flywheel and get ahead of the competition through rapid innovation.

2

Modern Application Development on AWS AWS Whitepaper
Capabilities of Modern Applications

Modern Application Development
The most successful companies recognize that it is their technology that sets them apart from the
competition. To keep growing and winning business, companies need to invent new products rapidly.
To promote a culture of innovation that makes this possible, successful companies continually update
their methods of designing, building, and administering applications. We call this modern application
development.

Modern application development gives companies a competitive edge by enabling them to innovate
more rapidly. Companies that embrace innovation can complete more experiments and bring ideas to
market more quickly by shifting resources from undifferentiated heavy lifting—such as administering
and provisioning infrastructure—to more valuable activities.

Modern application development practices can help companies to realize the speed and agility that go
with innovation. Some customers take their on-premises virtual machines (VMs) and move them (also
known as lift-and-shift) to host them on Amazon Elastic Compute Cloud (Amazon EC2). Other customers
change the platform of their applications to a container-based model that is more optimized for the
cloud. Still other companies refactor their monolithic applications and transition to a microservice-based
architecture. Most companies find that when they build more cloud-native applications, they spend less
time on administrative overhead and can focus more on their core business.

Topics
• Capabilities of Modern Applications (p. 3)
• Best Practices of Modern Application Development (p. 4)

Capabilities of Modern Applications
Modern applications should be:

• Secure – It is crucial for any application to be secure. Security measures must be implemented not only
in a certain piece of the application, but in all layers and at each stage of the lifecycle.

• Resilient – A modern application is resilient. For example, if an application encounters a failure
when it calls an external data source, it should retry or otherwise handle the exception—not become
unresponsive—while continuing to operate with a graceful degradation of functionality. This pattern
also applies to a microservices architecture and interactions with other services.

• Elastic – By flexibly scaling out and scaling in depending on the rate of requests or other metrics,
modern applications can optimize cost without missing business opportunities. Automating the
process of scaling out and scaling in, or using managed services that include auto scaling functionality,
reduces routine administrative burden and prevents the extreme disruption of outages.

• Modular – Modern applications are modular, with high cohesion and loose coupling. Larger systems
should not be single monoliths, but should be separated along domain boundaries into different
components, each with a distinct responsibility. Not only does this separation allow for greater
availability and scalability, but frequent releases are easier, because different components can be
deployed independently.

• Automated – Integration and deployment of modern applications must be automated to enable
frequent, high-quality releases. In addition to being error prone, manual processes can introduce
dependence on individual people, such as requiring a single administrator to make deployments. To
support agile development and frequent releases, modern applications should be deployed through
continuous integration and continuous delivery (CI/CD) pipelines. In a CI/CD model, code is pushed to
version control, tests are run in a clean CI environment, and deployments are performed automatically
if all tests pass.

3

http://aws.amazon.com/ec2/
https://martinfowler.com/articles/microservices.html

Modern Application Development on AWS AWS Whitepaper
Best Practices of Modern Application Development

• Interoperable – In modern applications, each service must interact with other services, provide the
resources requested of it, and perform the tasks expected of it. It must be possible to add functionality
to different services independently and continue to release frequently, without impacting other
services. This means that services must keep their implementation details private, exposing all
required functionality through robust, public APIs. These public APIs must also be stable and backward
compatible to allow for independent releases.

There are various methods you can use to implement modern applications. This paper includes
information about methods to deploy applications in the cloud with containers and serverless
technology.

Best Practices of Modern Application Development
Through conversations with customers and our own development teams, we found that there are several
modern application development best practices shared by organizations that bring innovative ideas to
the market rapidly.

Topics
• Security and Compliance (p. 4)
• Microservice Architecture (p. 5)
• Using Serverless Technology (p. 5)
• Automating Deployment with CI/CD (p. 6)
• Managing Infrastructure as Code (p. 6)
• Monitoring and Logging (p. 7)

Security and Compliance
When you build your system in the AWS Cloud, we recommend that you always start with security and
compliance. Securing the whole application lifecycle enables organizations to address security threats
without sacrificing speed of innovation. For example:

• Authentication – Control access to your system with permission settings that prevent malicious access.
AWS administrators can sign in to the AWS Console with AWS Identity and Access Management (IAM)
credentials, or through integrations with Microsoft Active Directory or a SAML Identity Provider.
Applications built on AWS can leverage Amazon Cognito to allow end users to authenticate and access
resources.

• Authorization – Implement role-based access control with flexible policies that restrict the use of
resources without overly complicated administration. IAM provides granular authorization policies for
any AWS resources.

• Auditing and Governance – Evaluate the behavior of workloads and make sure that they conform to
compliance requirements and your organization’s standards. AWS CloudTrail can audit interactions
with AWS APIs and log aggregation with Amazon CloudWatch enables you to audit your applications.
AWS Config can make sure that AWS resources are configured to align with your organization’s
standards.

• Validation – Test all aspects of application functionality, and make sure that it works as intended.
Automate validation as much as possible with continuous integration and continuous delivery (CI/CD).

Modern applications should be thoroughly and frequently tested, however, this must not reduce
development velocity. Similarly, you should limit developer permissions, but you should not revoke
the access that they require. Build your security into the entire application lifecycle, and automate and
continuously reevaluate your security processes and standards.

4

Modern Application Development on AWS AWS Whitepaper
Microservice Architecture

Microservice Architecture
As monolithic applications grow, it becomes difficult to modify or add functionality to them, and to
track what parts of the codebase are involved in a specific change. As a result, small changes can require
lengthy regression testing, and development of new features can slow. In an application built with a
microservice architecture and loosely coupled components, many new features and bug fixes can be
implemented at the level of a single service and released much more rapidly.

Organizations with monolithic legacy applications can become more agile and flexible by redesigning
their applications into microservices. Each service is deployed separately, and all the services work
together to offer the same functionality as the monolithic system. Microservices can be built, modified,
and released quickly, which provides faster experimentation and innovation. Each team that builds
microservices can also take clear ownership of their own design, development, deployment, and
operations.

To achieve this loose coupling, the microservices in a system must communicate with each other. A
datastore that is shared between services creates tight coupling, hidden dependencies, timing issues,
and challenges with scaling and availability. It is better to use published APIs or asynchronous message
queues to communicate between separate services. Separating processes into different pieces that are
connected by messages in queues creates clear transaction boundaries and enables services to operate
more independently.

Messaging systems can provide scalability, resilience, availability, consistency, and distributed
transactions because of the following characteristics:

• Trusted and resilient message delivery system
• Non-blocking and one-way operation
• Loosely coupled services
• Bringing focus to different logical components in the system, and allowing each to work independently

Architectures that take advantage of these elements can easily expose robust APIs and asynchronous
communication channels, which enables each service to be operated and automated independently, and
which also improves reliability.

When many different microservices are connected to perform a process, you must have a method to
monitor the state of a single end-to-end task. You must also make sure that all the necessary steps
happen in the correct order and at the correct time. You can use state machines to both monitor the
state of tasks and make sure they occur in the correct order.

You also need a method to manage the overall workflow between services, to configure various
timeouts, cancellations, heartbeats for long-running tasks, and granular monitoring and auditing.
Managing services with this type of tooling improves speed, productivity, and flexibility. To make sure
that microservices execute in the correct sequence with appropriate timing, modern applications take
advantage of orchestration and messaging tools. Using orchestration tools makes it easy to build robust
services in a repeatable way. AWS Step Functions is a fully managed tool that can coordinate arbitrary
workflows across services. When you use messaging tools, you remove direct dependencies between
services, which improves reliability and scalability. You can use different tools—such as Amazon Simple
Queue Service (Amazon SQS), Amazon CloudWatch Events, and Amazon Kinesis—depending on the
specific workload. By using orchestration and messaging tools together, your developers do not have to
spend time on workflow execution, state management, and inter-service communication, which gives
them valuable time to focus on core business logic.

Using Serverless Technology
When you operate and maintain the servers and operating systems (OS) that run your organization’s
applications, your system administrators must spend time completing simple and repetitive tasks, such

5

Modern Application Development on AWS AWS Whitepaper
Automating Deployment with CI/CD

as applying OS security patches. Instead of scaling up by request volume, they must provision servers
for peak volume ahead of time, while carefully considering availability and durability requirements. You
might also have to pay for all of this overprovisioned infrastructure in advance, instead of paying for
what you use as you go.

Though services such as AWS Auto Scaling and AWS Systems Manager can reduce these burdens on
conventional, VM-based infrastructure, when you build your system on serverless technology, you don’t
have to provision and manage servers. Your administrators don’t have to spend time on OS patches, or
maintain unused resources to be prepared for occasional peak usage. Serverless applications scale to
meet the precise demand on each component. Reliability and fault-tolerance are also largely built-in
by default, which eliminates much of the design and operations time required for these aspects of the
system. By building modern applications with serverless technologies from the beginning, the whole
lifecycle of building, deploying, and running applications can also be kept secure. When you remove
operational complexity, your developers can focus their time and energy on building products that
delight your customers.

AWS provides serverless computing services such as http://aws.amazon.com/lambda/AWS Lambda and
AWS Fargate. There is Amazon Simple Storage Service (Amazon S3) for object storage, and there are now
two serverless database options: Amazon DynamoDB, a fast and flexible NoSQL database, and Amazon
Aurora Serverless, an on-demand and auto-scaling configuration for Amazon Aurora. If you want to build
an end-to-end serverless application, compute, database, and storage services might not be enough. You
can use other serverless AWS offerings throughout your workload, from API management, messaging,
and orchestration, to troubleshooting and monitoring.

Automating Deployment with CI/CD
Companies strive to innovate quickly to deliver the most value they can to customers as quickly as
possible. To achieve this, modern applications use continuous integration and continuous delivery (CI/
CD) to automate the entire release process: building and running tests, promoting artifacts to staging,
and the final deployment to production. CI/CD can also automate certain security controls, such as
scanning for known vulnerabilities and performing static analysis. The full CI/CD pipeline can consist of
an arbitrary number of quality gates and controls, all of which must be passed successfully before any
new code makes it to production.

By automating the full build/test/deploy process, it becomes not only more reproducible, but faster as
well. It can also be performed much more frequently—perhaps many times a day—meaning that each
individual deployment consists of fewer changes and less risk. Instead of being a high-risk, all-hands-
on-deck event, CI/CD allows deployments to production to be mundane affairs. Finally, because the time
from when code is committed to when it is deployed is so much shorter than with manual processes,
high-priority security fixes or config changes no longer require special hot patches, but can flow through
the standard pipeline.

AWS customers can take advantage of fully-managed CI/CD services such as AWS CodeBuild, AWS
CodePipeline, and AWS CodeDeploy, in addition to open-source options and third-party marketplace
offerings.

Managing Infrastructure as Code
To get the full benefits of CI/CD, you should create a model for your entire application and infrastructure
as code (IaC). By modeling infrastructure as code, you can incorporate it into your standard application
development lifecycle, execute infrastructure changes in your CI/CD pipeline, and get additional benefits,
such as reducing configuration errors and provisioning faster. AWS provides a number of IaC tools.
One tool is AWS CloudFormation, which is a service that lets you specify any cloud infrastructure you
need in a simple template file, and then provisions the infrastructure for you. Another tool is AWS
Serverless Application Model (SAM), which builds on AWS CloudFormation with additional tooling and
convenience functions for building serverless applications. AWS CDK (CDK) is a tool that provides a

6

http://aws.amazon.com/lambda/
http://aws.amazon.com/fargate/
http://aws.amazon.com/s3/
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/rds/aurora/serverless/
http://aws.amazon.com/rds/aurora/serverless/
http://aws.amazon.com/serverless/
http://aws.amazon.com/cloudformation/
http://aws.amazon.com/serverless/sam/
http://aws.amazon.com/serverless/sam/
https://docs.aws.amazon.com/cdk/latest/guide/what-is.html

Modern Application Development on AWS AWS Whitepaper
Monitoring and Logging

framework to design cloud infrastructure in code using a language of your choice and then provisions it
with CloudFormation.

Monitoring and Logging
Developers of modern applications should monitor the behavior of their application at runtime using
monitoring and logging tools, and use that data to maintain or improve their customers’ experience.
In modern digital products, this could mean monitoring a many data types, including application logs,
data from mobile devices, web click streams, IoT sensor data, or other usage data. Modern application
developers should take advantage of all of this data as they continue to expand and enhance their
products.

On AWS, you can set up monitoring, logging, and alarms for all your application components using
Amazon CloudWatch. For more information on logging, see Log Aggregation.

Modern Application Checklist
Use the following information to verify the modernization level of your application:

• Security and compliance are built in throughout the application lifecycle
• Application is structured as a collection of microservices
• Serverless technologies are used wherever possible
• CI/CD is used to deliver high-quality functionality quickly
• Infrastructure is developed and deployed as code
• Monitoring tools are used to gain insight into the behavior of the application

7

Modern Application Development on AWS AWS Whitepaper
Implementing Microservice

Architectures using AWS Services

Modern Application Design Patterns

A best practice for modern application development is to use patterns to design and implement your
applications. Using AWS services as building blocks for these applications, you can greatly reduce your
implementation effort and achieve reliability and availability, which enables your developers to focus on
business logic that adds value to your applications.

Implementing Microservice Architectures using
AWS Services

You can use common patterns for microservices, following best practices, and implement them using
AWS services.

API Gateways
The API gateway pattern can be used when there are many calls to backend services, and when the
content provided varies depending on the client interface or device type. API gateways can consolidate
different backend services behind a unified API and serve the content required for each device.

Figure 1 – Example of communication between services and mobile devices and computer browsers without
an API gateway

8

Modern Application Development on AWS AWS Whitepaper
API Gateways

Figure 2 – Example of communication between services and mobile devices and computer browsers with an
API gateway

If you plan to use the API gateway pattern in the AWS Cloud, you can use Amazon API Gateway to
integrate with backend endpoints. Amazon API Gateway also enables you to create, publish, maintain,
monitor, and protect REST or WebSocket APIs at any scale.

Amazon API Gateway provides many other capabilities required of production-grade APIs, such as
throttling, caching, logging, API tokens, authentication or authorization integrated with Amazon
Cognito, custom authorizers, and proxying of requests to other AWS services. One essential AWS service
that Amazon API Gateway can send proxy requests to is AWS Lambda, which is the foundation for
creating arbitrary web services without managing any server infrastructure.

Because Amazon API Gateway is managed by AWS, you don't have to worry about operating and
maintaining it. Using Amazon API Gateway provides improved security, reliability, and availability, which
allows your developers to spend more time on core application functionality.

9

http://aws.amazon.com/api-gateway/

Modern Application Development on AWS AWS Whitepaper
Service Discovery and Service Registries

Figure 3 – Example of communication between services and mobile devices and computer browsers with
Amazon API gateway

Service Discovery and Service Registries
When a system includes multiple microservices, services must be able to find the location of the other
services that they depend on. Microservices must be scalable and elastic, and if components fail, new
instances or containers must be brought online to ensure constant availability. This means that the IP
addresses of the instances or containers in a microservice can be constantly changing. Each instance of a
service also must be continually monitored for availability. You can use load balancers to provide stable,
available endpoints, which are usually the best choice for public-facing web endpoints. However, load
balancers require additional compute resources and introduce latency. If the client is under your control,
as are the calls between microservices, it can be more efficient to use a service discovery pattern, which
you can also think of as client-side load balancing.

In the service discovery pattern, information about the services to be discovered must be registered
somewhere. A service registry is a central location where services to be called can store information about
themselves as each individual container or instance starts up.

10

Modern Application Development on AWS AWS Whitepaper
Service Discovery and Service Registries

Figure 4 – Example of a service registry pattern

Figure 5 – Example of a service discovery pattern

You can use AWS Cloud Map to implement a service registry and service discovery pattern in the AWS
Cloud. AWS Cloud Mapis a fully managed service that allows clients to look up IP address and port
combinations of service instances using DNS, and to dynamically retrieve abstract endpoints, such as
URLs or Amazon Resource Names (ARNs) over the HTTP-based service discovery API.

11

Modern Application Development on AWS AWS Whitepaper
Circuit Breaker

Figure 6 – Example of a service registry and service discovery pattern using AWS Cloud Map

Circuit Breaker
The circuit breaker pattern regulates the calls between microservices in your application. To respond to
user requests, the microservices in your application make calls to each other. If Service A sends a call to
Service B, but the return call from Service B is delayed or produces an error, then Service A returns an
error to the user. If Service A retries the call instead of returning an error, it might provide a better user
experience, but retries can produce extra load and long delays, and can end with an error returned to the
user. Instead, Service A should recognize that Service B is down, and degrade gracefully, if possible.

Figure 7 – Example of a circuit breaker pattern with returned calls between microservices

In the circuit breaker pattern, when calls to other services take longer than expected or return errors,
the circuit breaker keeps count of the incidences and changes to the open state if the count exceeds the
limit you configure. When in the open state, the circuit breaker returns errors to the caller immediately,
without calling downstream services. After a fixed amount of time has passed, the circuit breaker returns
to a closed state, which allows calls to the downstream service to return to normal.

12

Modern Application Development on AWS AWS Whitepaper
Command-Query Responsibility Segregation

Figure 8 – Example of a circuit breaker pattern with errors returned immediately to the user

It was previously a best practice to implement circuit breakers using a library or framework in the service
code, but now it is often handled in containerized microservices with sidecars. A sidecar is a separate
helper container that is launched with the main container that exposes a core service. Envoy Proxy is one
popular example of a sidecar. Though Envoy Proxy can be deployed on its own, it is often deployed as
part of a service mesh. In this type of deployment, Envoy Proxy is the data plane and a tool such as AWS
App Mesh or Istio is the control plane.

Command-Query Responsibility Segregation
Command Query Responsibility Segregation (CQRS) involves separating the data mutation or command
part of a system from the query part. Updates and queries are conventionally completed using a single
datastore. You can use CQRS to separate these two workloads if they have different requirements for
throughput, latency, or consistency. When you separate command and query functions, you can scale
them independently. For example, you can send queries to horizontally-scalable read replicas. For greater
separation of command and query functions, you can use different data models and datastores for
updates and queries. You can perform writes on a normalized model in a relational database through an
ORM (object-relational mapping) and perform queries against a denormalized database that stores data
in the same format required by an API (such as data transfer objects or DTOs), which reduces processing
overhead.

13

https://www.envoyproxy.io/

Modern Application Development on AWS AWS Whitepaper
Command-Query Responsibility Segregation

Figure 9 – Example of an architecture with updates and queries using a single datastore and ORM

14

Modern Application Development on AWS AWS Whitepaper
Command-Query Responsibility Segregation

Figure 10 – Example of a CQRS architecture with separate command and query workloads and two
datastores

Though this example optimizes your architecture for consistent writes in a relational database and
very low-latency reads, you might instead want to optimize for very high write throughput and flexible
query capabilities. In this situation, you can use a NoSQL datastore, such as Amazon DynamoDB, to
get high write scalability on a workload with certain, well-defined access patterns when you add data.
You can then use a relational database, such as Amazon Aurora, to provide complex, one-time query
functionality. With this option, you can use Amazon DynamoDB streams that send data to an AWS
Lambda function that makes appropriate updates to keep the data on Amazon Aurora up-to-date.

15

Modern Application Development on AWS AWS Whitepaper
Event Sourcing

Figure 11 – Example of a CQRS architecture on AWS with DynamoDB, Lambda, and Aurora

You can also combine the command part of a CQRS architecture with the event sourcing pattern (see the
following section). When you combine these patterns, you can rebuild the service query data model with
the latest application state by replaying the update events. It is important to remember that the CQRS
pattern generally results in eventual consistency between the queried datastore and the datastore that is
written to.

Event Sourcing
With the event sourcing pattern, instead of updating data stores directly, any events with significance
to business logic–such as orders being placed, credit inquiries being made, or orders being processed or
shipped–are added to a durable event log. Because each event record is stored individually, all updates
are atomic (indivisible and irreducible).

A key characteristic of this pattern is that the application state at any point in time can be rebuilt by
simply reprocessing the stored events. Because data is stored as a series of events rather than through
direct updates to data stores, various services can replay events from the event store to compute the
appropriate state of their respective data stores. This works well with the CQRS pattern discussed
previously, especially because you can reproduce data for an event regardless of whether the command
and query data stores have different schemas.

16

Modern Application Development on AWS AWS Whitepaper
Event Sourcing

Figure 12 – Example of the event sourcing pattern

Because the event sourcing pattern involves storing and later replaying event messages, it requires
some mechanism for storing and retrieving messages. If you plan to use this pattern in the AWS Cloud,
depending on your use case, you can use Amazon Kinesis, Amazon Simple Queue Service (SQS), Amazon
MQ, or Amazon MSK (Amazon MSK). In the event sourcing pattern, each event that changes the system is
stored first to a message queue, and then updates to the application state are made based on that event.
For example, an event can be written as a record in an Amazon Kinesis stream, and then a service built on
AWS Lambda can retrieve the record and perform updates in its own data store).

17

http://aws.amazon.com/kinesis/
http://aws.amazon.com/sqs/
http://aws.amazon.com/amazon-mq/
http://aws.amazon.com/amazon-mq/
http://aws.amazon.com/msk/

Modern Application Development on AWS AWS Whitepaper
Choreography

Figure 13 – Example of an event sourcing pattern using Amazon Kinesis and AWS Lambda

Sometimes it is useful to expand from one source of events to multiple targets. You can do this directly
with Amazon Kinesis Data Streams, which allows multiple consumers to retrieve data from a stream.
You can also use Amazon Simple Notification Service (Amazon SNS) to expand to multiple Lambda
functions, which all listen to the same topic, and can propagate event data from Kinesis to other stateful
components. With this configuration, you can also add an Amazon Simple Queue Service (Amazon SQS)
queue between Amazon SNS and a given Lambda function that enables you to specify what causes the
Lambda functions to execute.

Choreography
When a new customer creates an account on your website, they might need to save their profile
information, receive a welcome email, and get credited with some initial points to use on the site. All of
these activities are implemented by different services.

There are two implementation methods that you can consider to execute these tasks between your
microservices: the orchestration pattern and the choreography pattern. With the orchestration pattern,
similar to the relationship in a symphony between a conductor and an orchestra, there is a central service
that issues commands to other services and makes sure that the entire process is completed. With the
choreography pattern, just as dancers move independently after they have learned the choreography of
their dance, each service can execute independently in response to a particular event.

18

Modern Application Development on AWS AWS Whitepaper
Log Aggregation

When you use the choreography pattern, an initial event that contains all the required information can
be saved in a single message, and concludes an initial transaction. Other services can then retrieve that
message asynchronously and complete their respective tasks. With this architecture, services are loosely
coupled and do not have a direct impact on each other. The asynchronous relationship between saving
and retrieving messages also provides scalability and reliability benefits.

Figure 14 – Example of the choreography pattern

To implement the choreography pattern in the AWS Cloud, you can use Amazon Kinesis and AWS
Lambda, or, depending on your requirements, use a combination of Amazon Simple Notification Service
(Amazon SNS), Amazon Simple Queue Service (Amazon SQS), and AWS Lambda.

Figure 15 – Example of the choreography pattern using Amazon SNS, Amazon SQS, and AWS Lambda

Log Aggregation
The more complicated a system is, the more import it is to have good logs. The challenge is that if
logs are scattered across different services, it’s difficult to get a unified view of the entire system. It is
essential to have a centralized place where logs are uniformly managed and discoverable. Gathering
metrics is also important. In a microservice architecture, calls to various services might be required
to handle a given request, so it can be more difficult to find the source of poor performance or errors
compared to a monolith. This is why it’s critical to have centrally aggregated logs and runtime metrics.

19

Modern Application Development on AWS AWS Whitepaper
Polyglot Persistence

Figure 16 – Example of an architecture with log aggregation

For aggregated logging in the AWS Cloud, you can use Amazon CloudWatch. If you use AWS Lambda
to implement microservices, anything you write to stdout is sent to CloudWatch Logs. Amazon Elastic
Container Service (Amazon ECS) and AWS Fargate can also send anything written to stdout to Amazon
CloudWatch Logs with the awslogs log driver. If you use Amazon Elastic Kubernetes Service (Amazon
EKS), the logs can be sent to Amazon CloudWatch Logs using the sidecar pattern with Fluentd or Fluent
Bit. CloudWatch Using Container Insights can also be used to send logs and metrics to CloudWatch for
containerized applications running on either Amazon ECS and AWS Fargate or Amazon EKS.

To trace the execution times or errors from calls between services, you can use AWS X-Ray. AWS X-Ray
lets you understand how your application and its underlying services are performing so you can identify
and troubleshoot the root cause of performance issues and errors. X-Ray provides an end-to-end view
of requests as they travel through your application, and shows a map of your application’s underlying
components.

Figure 17 – Example of an architecture with log aggregation using Amazon CloudWatch and AWS X-Ray

Polyglot Persistence
In microservice architectures, each service should expose a public API and hide implementation details
from other services. With this architecture, as long as the team that builds a given service maintains

20

http://aws.amazon.com/cloudwatch/
https://www.fluentd.org/
https://fluentbit.io/
https://fluentbit.io/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContainerInsights.html
http://aws.amazon.com/xray/

Modern Application Development on AWS AWS Whitepaper
Polyglot Persistence

the API contract, it can freely modify the internals of a service without worrying whether other services
depend on the modified code. Teams can also make deployments to their own services when they
need to and can choose to implement their service with their preferred programming languages and
databases. With polyglot persistence, you choose the correct data storage technology based on the data
access patterns and other requirements of a given service.

If every service team has to use the same data storage technology, they can encounter implementation
challenges or poor performance if that data store is not a good fit for a given situation. When teams are
allowed to choose the data store that is the best fit for their requirements, they can implement their
services more easily and achieve better performance and scalability.

AWS offers several data storage services that enable polyglot persistence, as summarized in the
following table.

Table 1 – AWS data storage services for polyglot persistence

Data Store Features

Amazon DynamoDB A key-value and document database that delivers
single-digit millisecond performance at any
scale. It's a fully managed, multi-region, multi-
master, durable database with built-in security,
backup and restore, and in-memory caching for
internet-scale applications. DynamoDB can handle
more than 10 trillion requests per day and can
support peaks of more than 20 million requests
per second.

Amazon Aurora and Amazon Relational Database
Service (RDS)

Amazon Aurora is a MySQL and PostgreSQL-
compatible relational database built for the cloud,
that combines the performance and availability
of traditional enterprise databases with the
simplicity and cost-effectiveness of open source
database.

Amazon RDS (Amazon RDS) makes it easy to
set up, operate, and scale a relational database
in the cloud. It provides cost-efficient and
resizable capacity, while automating time-
consuming administration tasks, such as
hardware provisioning, database setup, patching
and backups. It enables you to focus on your
applications so you can give them the fast
performance, high availability, security, and
compatibility they need.

Amazon ElastiCache Amazon ElastiCache offers fully
managed Redis and Memcached. Seamlessly
deploy, run, and scale popular open-source
compatible, in-memory data stores. Build data-
intensive apps or improve the performance of
your existing apps by retrieving data from high
throughput and low latency in-memory data
stores.

Amazon EBS Amazon Elastic Block Store (EBS) is an easy to use,
high performance block storage service designed
for use with Amazon Elastic Compute Cloud (EC2)

21

http://aws.amazon.com/relational-database/
http://aws.amazon.com/rds/
http://aws.amazon.com/redis/
http://aws.amazon.com/memcached/

Modern Application Development on AWS AWS Whitepaper
Polyglot Persistence

Data Store Features

for both throughput and transaction intensive
workloads at any scale.

Amazon EBS volume data is replicated across
multiple servers in an Availability Zone to prevent
the loss of data from the failure of any single
component. Amazon EBS volumes offer the
consistent and low-latency performance needed
to run your workloads. With Amazon EBS, you
can scale your usage up or down within minutes
—all while paying a low price for only what you
provision.

Amazon EFS Amazon Elastic File System (Amazon EFS)
provides a simple, scalable, elastic file system for
Linux-based workloads for use with AWS Cloud
services and on-premises resources. It is built to
scale on demand to petabytes without disrupting
applications, growing and shrinking automatically
as you add and remove files, so your applications
have the storage they need when they need it. It
is designed to provide massively parallel shared
access to thousands of Amazon EC2 instances,
which enables your applications to achieve high
levels of aggregate throughput and IOPS with
consistent low latencies.

Amazon S3 Amazon Simple Storage Service (Amazon S3) is
an object storage service that offers industry-
leading scalability, data availability, security, and
performance. This means customers of all sizes
and industries can use it to store and protect any
amount of data for a range of use cases, such as
websites, mobile applications, backup and restore,
archive, enterprise applications, IoT devices, and
big data analytics.

22

Modern Application Development on AWS AWS Whitepaper
CI/CD Services on AWS

Continuous Integration and
Continuous Delivery on AWS

Because continuous integration (CI) and continuous delivery (CD) are critical to recognizing the value
of modern application development, it is important carefully consider how to implement these best
practices on AWS. AWS offers several services to help you deliver modern applications quickly, as
discussed in the Automating Deployment with CI/CD section. Because these services are fully managed,
your development teams can focus on automating deployments and rapidly delivering new functionality
instead of the undifferentiated heavy lifting of maintaining and securing CI servers.

Topics

• CI/CD Services on AWS (p. 23)

• CI/CD Patterns for Different Application Types (p. 25)

CI/CD Services on AWS
You can use the following AWS services for CI/CD deployments in the AWS Cloud.

Topics

• AWS Cloud9 (p. 23)

• AWS CodeStar (p. 24)

• AWS CodePipeline (p. 24)

• AWS CodeCommit (p. 24)

• AWS CodeBuild (p. 24)

• AWS CodeDeploy (p. 25)

• AWS Amplify Console (p. 25)

AWS Cloud9
AWS Cloud9 is a cloud-based integrated development environment (IDE) that you can use to write, run,
and debug your code with only a browser. It includes a code editor, debugger, and terminal. AWS Cloud9
includes essential tools for popular programming languages, including JavaScript, Python, and PHP, so
you don’t have to install files or configure your development machine to start new projects.

Because your AWS Cloud9 IDE is cloud-based, you can work on projects from your office, home, or
anywhere you have an internet-connected machine. AWS Cloud9 also provides a seamless experience
for developing serverless applications, which enables you to easily define resources, debug, and switch
between local and remote execution of serverless applications. With AWS Cloud9, you can quickly share
your development environment with your team, which enables you to pair program and track each
other's inputs in real time.

23

http://aws.amazon.com/cloud9/

Modern Application Development on AWS AWS Whitepaper
AWS CodeStar

Figure 18 – Example of code in AWS Cloud9

AWS CodeStar
AWS CodeStar enables you to quickly develop, build, and deploy applications in the AWS Cloud.
AWS CodeStar provides a unified user interface, which enables you to easily manage your software
development activities in one place. With AWS CodeStar, you can set up your entire continuous
delivery toolchain in minutes, so you can start releasing code faster. AWS CodeStar makes it easy for your
whole team to work together securely. You can easily manage access and add owners, contributors, and
viewers to your projects. Each AWS CodeStar project includes a project management dashboard that you
can use to easily track progress across your entire software development process, from your backlog of
work items to your teams’ recent code deployments.

AWS CodePipeline
AWS CodePipeline is a fully managed continuous delivery service that helps you automate your release
pipelines for fast and reliable application and infrastructure updates. CodePipeline automates the build,
test, and deploy phases of your release process each time there is a code change, based on the release
model you define. This enables you to rapidly and reliably deliver features and updates.

AWS CodeCommit
AWS CodeCommit is a fully-managed source control service that hosts secure Git-based repositories. It
makes it easy for teams to collaborate on code in a secure and highly scalable ecosystem. CodeCommit
eliminates the need to operate your own source control system or worry about scaling its infrastructure.
You can use CodeCommit to securely store anything from source code to binaries, and it works
seamlessly with your existing Git tools.

AWS CodeBuild
AWS CodeBuild is a fully managed continuous integration service that compiles source code, runs tests,
and produces software packages that are ready to deploy. With CodeBuild, you don’t need to provision,
manage, and scale your own build servers. CodeBuild scales continuously and processes multiple
builds concurrently, so your builds are not left waiting in a queue. You can get started quickly by using
prepackaged build environments, or you can create custom build environments that use your own build
tools.

24

http://aws.amazon.com/codestar/
http://aws.amazon.com/codepipeline/
http://aws.amazon.com/codecommit/
https://git-scm.com/
http://aws.amazon.com/codebuild/

Modern Application Development on AWS AWS Whitepaper
AWS CodeDeploy

AWS CodeDeploy
AWS CodeDeploy is a fully managed deployment service that automates software deployments to a
variety of computing services, such as Amazon Elastic Compute Cloud (Amazon EC2), AWS Fargate, AWS
Lambda, and your on-premises servers. With AWS CodeDeploy, you can rapidly release new features
and avoid downtime during application deployment. AWS CodeDeploy also handles the complexity of
updating your applications. You can use AWS CodeDeploy to automate software deployments, which
eliminates the need for error-prone manual operations. The service scales to match your deployment
needs.

AWS Amplify Console
The AWS Amplify Console provides a Git-based workflow to deploy and host full-stack serverless web
applications. A full-stack serverless application consists of a backend built with cloud resources, such
as GraphQL or REST APIs, file and data storage, and a frontend built with single page application
frameworks, such as React, Angular, Vue, or Gatsby. Full-stack serverless web application functionality
is often spread across frontend code that runs in the browser and backend business logic that runs in
the cloud. This makes application deployment complex and time consuming because you must carefully
coordinate release cycles to make sure that your frontend and backend are compatible, and that new
features do not break your production customers. The Amplify Console accelerates your application
release cycle by providing a simple workflow to deploy full-stack serverless applications. You connect
your application's code repository to Amplify Console, and changes to your frontend and backend are
deployed in a single workflow on every code commit.

CI/CD Patterns for Different Application Types
You can use a CI/CD pattern for each major type of modern application that you might deploy in the
AWS Cloud. You can implement CI/CD quickly using AWS-native development tools without worrying
about the heavy lifting of setting up and maintaining a complicated CI environment. The following are
some examples of how you can use CI/CD patterns in the AWS Cloud.

Topics

• Deploy a Single-Page Application (p. 25)

• Deploy to Containers (p. 26)

• Deploy to Containers (Blue/Green Deployment) (p. 26)

• Canary Deployments to AWS Lambda (p. 27)

Deploy a Single-Page Application
Single-page applications (SPAs) are applications that consist of static content (HTML, CSS, JavaScript,
and media) that is downloaded to the browser, from which calls are made to backend APIs. You can use
the AWS Amplify Console to quickly build and release SPAs. AWS Amplify console can automatically
detect when new code is pushed to repositories such as GitHub or AWS CodeCommit, deploy the static
frontend content to Amazon Simple Storage Service (Amazon S3), then deliver the content to your users
through Amazon CloudFront, a content delivery network. The Amplify Console can also deploy changes
to serverless backends with GraphQL and REST APIs, authentication, analytics, and storage created by
the Amplify CLI.

25

http://aws.amazon.com/codedeploy/
http://aws.amazon.com/amplify/console/
https://graphql.org/
https://reactjs.org/
https://angular.io/
https://vuejs.org/index.html
https://www.gatsbyjs.org/
https://github.com/#_blank
http://aws.amazon.com/cloudfront/

Modern Application Development on AWS AWS Whitepaper
Deploy to Containers

Figure 19 – Example architecture of deployment for a single-page application

Deploy to Containers
Using AWS CodePipeline, you can continuously deploy to the Amazon Elastic Container Service (Amazon
ECS) container orchestration service with minimal configuration. In the source stage, AWS CodePipeline
automatically detects changes in the source code repository. In the build stage, it builds Docker images
using AWS CodeBuild and pushes them to a Docker repository, such as Amazon Elastic Container Registry
(ECR). Finally, AWS CodePipleline deploys to Amazon ECS.

Figure 20 – Example architecture of deployment to containers

Deploy to Containers (Blue/Green Deployment)
Amazon ECS and AWS CodeDeploy also support blue/green deployment to containers. AWS CodeDeploy
uses Application Load Balancers (ALBs)—a type of Amazon Elastic Load Balancing—to automate blue/
green deployments by switching traffic smoothly between two parallel target groups.

26

http://aws.amazon.com/ecr/
http://aws.amazon.com/elasticloadbalancing/

Modern Application Development on AWS AWS Whitepaper
Canary Deployments to AWS Lambda

Figure 21 – Example architecture of blue/green deployment to containers

Canary Deployments to AWS Lambda
AWS CodeDeploy also supports canary deployments to AWS Lambda. AWS CodeDeploy uses Lambda’s
traffic shifting capabilities to automate the gradual rollout of new function versions. This enables you to
gradually shift traffic between two versions, and helps you reduce the risk and limit the impact of new
Lambda deployments.

Figure 22 – Example architecture of a canary deployment in the AWS Cloud

When you perform AWS Lambda deployments with AWS CodeDeploy, you can use one of the following
predefined deployment configuration options or you can create your own custom configuration. All of
these options can also be used to deploy applications based on the Serverless Application Model (SAM).

27

Modern Application Development on AWS AWS Whitepaper
Canary Deployments to AWS Lambda

Table 2 – Predefined deployment configuration options for canary deployments with AWS Lambda and AWS
CodeDeploy

Deployment Configuration Description

CodeDeployDefault.LambdaCanary10Percent5MinutesShifts 10 percent of traffic in the first increment.
The remaining 90 percent is deployed 15 minutes
later.

CodeDeployDefault.LambdaCanary10Percent10MinutesShifts 10 percent of traffic in the first increment.
The remaining 90 percent is deployed 10 minutes
later.

CodeDeployDefault.LambdaCanary10Percent15MinutesShifts 10 percent of traffic in the first increment.
The remaining 90 percent is deployed 15 minutes
later.

CodeDeployDefault.LambdaCanary10Percent30MinutesShifts 10 percent of traffic in the first increment.
The remaining 90 percent is deployed 30 minutes
later.

CodeDeployDefault.LambdaLinear10PercentEvery1MinuteShifts 10 percent of traffic every minute until all
traffic is shifted.

CodeDeployDefault.LambdaLinear10PercentEvery2MinutesShifts 10 percent of traffic every two minutes
until all traffic is shifted.

CodeDeployDefault.LambdaLinear10PercentEvery3MinutesShifts 10 percent of traffic every three minutes
until all traffic is shifted.

CodeDeployDefault.LambdaLinear10PercentEvery10MinutesShifts 10 percent of traffic every 10 minutes until
all traffic is shifted.

CodeDeployDefault.LambdaAllAtOnce Shifts all traffic to the updated Lambda functions
at once.

28

Modern Application Development on AWS AWS Whitepaper

Conclusion
Modern companies must broaden their reach across the globe and invest in digital initiatives to beat the
competition. As user interaction with digital products evolves, the customer experience must get better
and satisfy an increasingly diverse pool of users. To satisfy users’ high expectations, businesses must not
fear failure, but must constantly experiment and incorporate user feedback into their products.

Modern application development is a mindset and a methodology to enable rapid updates and releases.
Development teams that embrace these modern practices eliminate undifferentiated heavy lifting by
automating repetitive tasks, using managed services wherever possible, and spending most of their time
building products that delight their customers.

Successfully adopting modern application development best practices enables your organization to
experiment and innovate rapidly, and using native AWS services to implement these practices lets you
move even faster.

29

Modern Application Development on AWS AWS Whitepaper

Contributors
Contributors to this document include:

• Atsushi Fukui, Solutions Architect, Amazon Web Services
• Kevin Bell, Solutions Architect, Amazon Web Services

30

Modern Application Development on AWS AWS Whitepaper
AWS Services

Further Reading
For more information, see the following resources.

AWS Services
• Amazon API Gateway

https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
• AWS Cloud Map

https://docs.aws.amazon.com/cloud-map/latest/dg/what-is-cloud-map.html
• AWS Lambda

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
• Amazon Kinesis Data Streams

https://docs.aws.amazon.com/streams/latest/dev/introduction.html
• Amazon Simple Queue Service

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html
• Amazon Simple Notification Service

https://docs.aws.amazon.com/sns/latest/dg/welcome.html
• Amazon Elastic Container Service

https://docs.aws.amazon.com/AmazonECS/latest/userguide/Welcome.html
• Amazon EKS

https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
• AWS CodePipeline

https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
• AWS CodeCommit

https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
• AWS CodeBuild

https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
• AWS CodeDeploy

https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
• Blue/Green Deployments from AWS CodeDeploy to Amazon ECS

https://docs.aws.amazon.com/AmazonECS/latest/userguide/deployment-type-bluegreen.html
• AWS CodeStar

https://docs.aws.amazon.com/codestar/latest/userguide/welcome.html
• AWS Cloud9

https://docs.aws.amazon.com/cloud9/latest/user-guide/welcome.html

31

https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html
https://docs.aws.amazon.com/cloud-map/latest/dg/what-is-cloud-map.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/streams/latest/dev/introduction.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html
https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/Welcome.html
https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/deployment-type-bluegreen.html
https://docs.aws.amazon.com/codestar/latest/userguide/welcome.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/welcome.html

Modern Application Development on AWS AWS Whitepaper
Whitepapers

• Messaging Services

https://aws.amazon.com/messaging/
• Serverless Services

https://aws.amazon.com/serverless/

Whitepapers
• Microservices on AWS

https://d1.awsstatic.com/whitepapers/microservices-on-aws.pdf
• Introduction to DevOps on AWS

https://d1.awsstatic.com/whitepapers/AWS_DevOps.pdf
• Infrastructure as Code

https://d1.awsstatic.com/whitepapers/infrastructure-as-code.pdf
• Practicing Continuous Integration and Continuous Delivery on AWS

https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-
delivery-on-AWS.pdf

Video
Choosing the Right Messaging Service for Your Distributed App (API305)

https://www.youtube.com/watch?v=4-JmX6MIDDI

32

http://aws.amazon.com/messaging/
http://aws.amazon.com/serverless/
https://d1.awsstatic.com/whitepapers/microservices-on-aws.pdf
https://d1.awsstatic.com/whitepapers/AWS_DevOps.pdf
https://d1.awsstatic.com/whitepapers/infrastructure-as-code.pdf
https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://d1.awsstatic.com/whitepapers/DevOps/practicing-continuous-integration-continuous-delivery-on-AWS.pdf
https://www.youtube.com/watch?v=4-JmX6MIDDI

Modern Application Development on AWS AWS Whitepaper

Document Revisions
To be notified about updates to this whitepaper, subscribe to the RSS feed.

update-history-change update-history-description update-history-date

Initial publication (p. 33) Whitepaper first published. October 23, 2019

33

Modern Application Development on AWS AWS Whitepaper

Notices
Customers are responsible for making their own independent assessment of the information in this
document. This document: (a) is for informational purposes only, (b) represents current AWS product
offerings and practices, which are subject to change without notice, and (c) does not create any
commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or services
are provided “as is” without warranties, representations, or conditions of any kind, whether express or
implied. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements,
and this document is not part of, nor does it modify, any agreement between AWS and its customers.

© 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved.

34

	Modern Application Development on AWS
	Table of Contents
	Modern Application Development on AWS
	Abstract

	Introduction
	Accelerating the Innovation Flywheel

	Modern Application Development
	Capabilities of Modern Applications
	Best Practices of Modern Application Development
	Security and Compliance
	Microservice Architecture
	Using Serverless Technology
	Automating Deployment with CI/CD
	Managing Infrastructure as Code
	Monitoring and Logging
	Modern Application Checklist

	Modern Application Design Patterns
	Implementing Microservice Architectures using AWS Services
	API Gateways
	Service Discovery and Service Registries
	Circuit Breaker
	Command-Query Responsibility Segregation
	Event Sourcing
	Choreography
	Log Aggregation
	Polyglot Persistence

	Continuous Integration and Continuous Delivery on AWS
	CI/CD Services on AWS
	AWS Cloud9
	AWS CodeStar
	AWS CodePipeline
	AWS CodeCommit
	AWS CodeBuild
	AWS CodeDeploy
	AWS Amplify Console

	CI/CD Patterns for Different Application Types
	Deploy a Single-Page Application
	Deploy to Containers
	Deploy to Containers (Blue/Green Deployment)
	Canary Deployments to AWS Lambda

	Conclusion
	Contributors
	Further Reading
	AWS Services
	Whitepapers
	Video

	Document Revisions
	Notices

